Root damages induced by extended phytotoxic effects of cadmium pre-exposure against subsequent lindane uptake in rice seedlings

Author(s):  
Shidi Huang ◽  
Li Tan ◽  
Hong Zhu ◽  
G. Daniel Sheng
Author(s):  
Antara Ghosh ◽  
Krishnendu Pramanik ◽  
Shatabda Bhattacharya ◽  
Sayanta Mondal ◽  
Sudip Kumar Ghosh ◽  
...  

Weed Science ◽  
2014 ◽  
Vol 62 (3) ◽  
pp. 457-467 ◽  
Author(s):  
Tse Seng Chuah ◽  
Md Zain Norhafizah ◽  
Sahid Ismail

Chinese sprangletop, a problematic weed in aerobic rice fields, has developed resistance to various groups of herbicides. In search of natural herbicides, the phytotoxic effects of napiergrass extracts on Chinese sprangletop were investigated. Phytotoxicity-directed extraction and fractionation of the culm plus leaves of napiergrass led to the isolation and identification of three major compounds: 2,4-di-tert-butylphenol (2,4-DTBP), cis-9-octadecenoic methyl ester (methyl oleate), and phthalic acid, mono-(2-ethylhexyl) ester (MEHP). These compounds showed different degrees of inhibition against the tested bioassay species. 2,4-DTBP was the most potent of the three compounds and completely inhibited the germination of Chinese sprangletop at the concentration of 0.5 g L−1, followed by MEHP, where 62% inhibition of germination was obtained. In contrast, methyl oleate showed only slight inhibition (< 10%) of germination. A soil bioassay further demonstrated that 2,4-DTBP is a strong inhibitor of root growth and completely prevented root growth of Chinese sprangletop at an application rate as low as 0.60 kg ai ha−1. Under aerobic conditions, 2,4-DTBP at 2.4 kg ai ha−1 reduced the emergence and shoot fresh weight of Chinese sprangletop by more than 60%, with negligible effect on root and shoot growth of aerobic rice seedlings, suggesting that 2.4 kg ai ha−1 2,4-DTBP is the most suitable rate to control Chinese sprangletop without injuring rice seedlings. Reduction in shoot height of rice plant was evident at 0 d after sowing across 2,4-DTBP rates. However, the rice plants became less susceptible with increasing growth stages. The present findings imply that 2,4-DTBP may potentially be developed as a PRE soil-applied natural herbicide for control of Chinese sprangletop and perhaps other weeds in aerobic rice system.


2017 ◽  
Vol 2 (2) ◽  
pp. 29-36
Author(s):  
Xiao-Zhang Yu ◽  
◽  
Fei-Fei Zhang ◽  

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 777
Author(s):  
Sara Monzerrat Ramírez-Olvera ◽  
Libia Iris Trejo-Téllez ◽  
Fernando Carlos Gómez-Merino ◽  
Lucero del Mar Ruíz-Posadas ◽  
Ernesto Gabriel Alcántar-González ◽  
...  

Exogenous silicon (Si) can enhance plant resistance to various abiotic factors causing osmotic stress. The objective of this research was to evaluate the application of 1 and 2 mM Si to plants under normal conditions and under osmotic stress. Morelos A-98 rice seedlings, were treated with 1 and 2 mM SiO2 for 28 d. Subsequently, half of the plants were subjected to osmotic stress with the addition of 10% polyethylene glycol (PEG) 8000; and continued with the addition of Si (0, 1 and 2 mM SiO2) for both conditions. The application of Si under both conditions increased chlorophyll b in leaves, root volume, as well as fresh and dry biomass of roots. Interestingly, the number of tillers, shoot fresh and dry biomass, shoot water content, concentration of total chlorophyll, chlorophyll a/b ratio, and the concentration of total sugars and proline in shoot increased with the addition of Si under osmotic stress conditions. The addition of Si under normal conditions decreased the concentration of sugars in the roots, K and Mn in roots, and increased the concentration of Fe and Zn in shoots. Therefore, Si can be used as a potent inorganic biostimulant in rice Morelos A-98 since it stimulates plant growth and modulates the concentration of vital biomolecules and essential nutrients.


Sign in / Sign up

Export Citation Format

Share Document