Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092

2018 ◽  
Vol 351 ◽  
pp. 317-329 ◽  
Author(s):  
Krishnendu Pramanik ◽  
Soumik Mitra ◽  
Anumita Sarkar ◽  
Tushar Kanti Maiti
Author(s):  
Antara Ghosh ◽  
Krishnendu Pramanik ◽  
Shatabda Bhattacharya ◽  
Sayanta Mondal ◽  
Sudip Kumar Ghosh ◽  
...  

Weed Science ◽  
2014 ◽  
Vol 62 (3) ◽  
pp. 457-467 ◽  
Author(s):  
Tse Seng Chuah ◽  
Md Zain Norhafizah ◽  
Sahid Ismail

Chinese sprangletop, a problematic weed in aerobic rice fields, has developed resistance to various groups of herbicides. In search of natural herbicides, the phytotoxic effects of napiergrass extracts on Chinese sprangletop were investigated. Phytotoxicity-directed extraction and fractionation of the culm plus leaves of napiergrass led to the isolation and identification of three major compounds: 2,4-di-tert-butylphenol (2,4-DTBP), cis-9-octadecenoic methyl ester (methyl oleate), and phthalic acid, mono-(2-ethylhexyl) ester (MEHP). These compounds showed different degrees of inhibition against the tested bioassay species. 2,4-DTBP was the most potent of the three compounds and completely inhibited the germination of Chinese sprangletop at the concentration of 0.5 g L−1, followed by MEHP, where 62% inhibition of germination was obtained. In contrast, methyl oleate showed only slight inhibition (< 10%) of germination. A soil bioassay further demonstrated that 2,4-DTBP is a strong inhibitor of root growth and completely prevented root growth of Chinese sprangletop at an application rate as low as 0.60 kg ai ha−1. Under aerobic conditions, 2,4-DTBP at 2.4 kg ai ha−1 reduced the emergence and shoot fresh weight of Chinese sprangletop by more than 60%, with negligible effect on root and shoot growth of aerobic rice seedlings, suggesting that 2.4 kg ai ha−1 2,4-DTBP is the most suitable rate to control Chinese sprangletop without injuring rice seedlings. Reduction in shoot height of rice plant was evident at 0 d after sowing across 2,4-DTBP rates. However, the rice plants became less susceptible with increasing growth stages. The present findings imply that 2,4-DTBP may potentially be developed as a PRE soil-applied natural herbicide for control of Chinese sprangletop and perhaps other weeds in aerobic rice system.


2017 ◽  
Vol 2 (2) ◽  
pp. 29-36
Author(s):  
Xiao-Zhang Yu ◽  
◽  
Fei-Fei Zhang ◽  

2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Mahyudin Abdul Rachman

Enterobacter aerogenes AY-2 mutant is known for hydrogen gas producer which ws obtained from the sludge of methane fermentation and the yield is 1.5 fold higher than wildtype. Hydrogen gas production can be gain via NADH oxidation in anaerobic metabolic pathway by blocking organic acid production. Metabolic pathway can be changed by mutagenesis. Enterobacter aerogenes AY-2 mutated with ethyl methane sulfonate in logarithmic phase with consentration 10, 11, 12, 13, 14 and 15 μl/ml cell suspention during 120 minute. Mutation that result lowest survival ratio (0,01%) was 14 μl EMS/ml cell suspention is repeated with variation incubation time, 30, 60, 90 and 120 minute. 166 double mutant colony has been collected and choosen randomly. The choosen 43 colony was fermented in glycerol complex medium for determining ten double mutant with the highest H2 production. Double mutant AD-H43 is a highest H2 producer that increase 20% H2 production from AY-2 and has a decrease lactid acid production, 31% less from AY-2. Increasing H2 production in double mutant AD-H43 is caused by lactate dehydrogenase deffi cient.Keywords: Enterobacter aerogenes AY-2, ethyl methane sulfonate (EMS), H2 and methane sludge


Sign in / Sign up

Export Citation Format

Share Document