scholarly journals Developing potency factors for thyroid hormone disruption by PFASs using TTR-TRβ CALUX® bioassay and assessment of PFASs mixtures in technical products

2021 ◽  
Vol 157 ◽  
pp. 106791
Author(s):  
Peter A. Behnisch ◽  
Harrie Besselink ◽  
Roland Weber ◽  
Wolfram Willand ◽  
Jun Huang ◽  
...  
2010 ◽  
Vol 48 (01) ◽  
Author(s):  
IA Malik ◽  
N Naz ◽  
F Moriconi ◽  
F Moriconi ◽  
B Baumgartner ◽  
...  

2014 ◽  
Vol 122 (03) ◽  
Author(s):  
H Rakov ◽  
K Engels ◽  
D Zwanziger ◽  
M Renders ◽  
K Brix ◽  
...  

2002 ◽  
Vol 41 (04) ◽  
pp. 178-183 ◽  
Author(s):  
V. Fidler ◽  
K. Zaletel ◽  
S. Gaberšček ◽  
S. Hojker ◽  
E. Pirnat

Summary Aim: In spite of extensive use of 131I for treatment of hyperthyroidism, the results of early outcome are variable. In our prospective clinical study we tested whether 131I induced necrosis causing clinical aggravation of hyperthyroidism and increasing the free thyroid hormone concentration in the serum of patients with solitary toxic adenoma not pretreated with antithyroid drugs. Patients and methods: 30 consecutive patients were treated with 925 MBq 131I. Serum concentration of thyrotropin (TSH), free thyroxine (fT4), free triiodothyronine (fT3), thyroglobulin (Tg), and interleukin-6 (IL-6) were measured before and after application of 131I. Results: After application of 131I no clinical worsening was observed. FT4 and fT3 concentration did not change significantly within the first five days, whereas both of them significantly decreased after 12 days (p <0.0001). Slight and clinically irrelevant increase in the level of the two thyroid hormones was observed in 9 patients. Furthermore, we observed a prolonged increase in Tg concentration and a transient increase in IL-6 concentration. Conclusion: Neither evidence of any clinical aggravation of hyperthyroidism nor any significant increase in thyroid hormone concentration by 131I induced necrosis of thyroid cells was found. Therefore, the application of 131I may be considered as a safe and effective treatment for patients with hyperthyroidism due to toxic adenoma.


1995 ◽  
Vol 74 (02) ◽  
pp. 686-692 ◽  
Author(s):  
René W L M Niessen ◽  
Birgit A Pfaffendorf ◽  
Augueste Sturk ◽  
Roy J Lamping ◽  
Marianne C L Schaap ◽  
...  

SummaryAs a basis for regulatory studies on the influence of hormones on (anti)coagulant protein production by hepatocytes, we examined the amounts of the plasma proteins antithrombin III (AT III), protein C, protein S, factor II, factor X, fibrinogen, and prealbumin produced by the hepatoma cell line HepG2, into the culture medium, in the absence and presence of insulin, β-estradiol, dexamethasone and thyroid hormone. Without hormones these cells produced large amounts of fibrinogen (2,452 ± 501 ng/mg cell protein), AT III (447 ± 16 ng/mg cell protein) and factor II (464 ± 31 ng/mg cell protein) and only small amounts of protein C (50 ± 7 ng/mg cell protein) and factor X (55 ± 5 ng/mg cell protein). Thyroid hormone had a slight but significant effect on the enrichment in the culture medium of the anticoagulant protein AT III (1.34-fold) but not on protein C (0.96-fold) and protein S (0.91-fold). This hormone also significantly increased the amounts of the coagulant proteins factor II (1.28-fold), factor X (1.45-fold) and fibrinogen (2.17-fold). Insulin had an overall stimulating effect on the amounts of all the proteins that were investigated. Neither dexamethasone nor ß-estradiol administration did substantially change the amounts of these proteins.We conclude that the HepG2 cell is a useful tool to study the hormonal regulation of the production of (anti)coagulant proteins. We studied the overall process of protein production, i.e., the amounts of proteins produced into the culture medium. Detailed studies have to be performed to establish the specific hormonal effects on the underlying processes, e.g., transcription, translation, cellular processing and transport, and secretion.


Sign in / Sign up

Export Citation Format

Share Document