Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation

2005 ◽  
Vol 136 (1) ◽  
pp. 187-195 ◽  
Author(s):  
Dibyendu Sarkar ◽  
Michael Ferguson ◽  
Rupali Datta ◽  
Stuart Birnbaum
Chemosphere ◽  
2019 ◽  
Vol 234 ◽  
pp. 864-874 ◽  
Author(s):  
Marie Thérèse Bidja Abena ◽  
Tongtong Li ◽  
Muhammad Naeem Shah ◽  
Weihong Zhong

2006 ◽  
Vol 53 (2) ◽  
pp. 321-328 ◽  
Author(s):  
C.M. Kao ◽  
W.Y. Huang ◽  
L.J. Chang ◽  
T.Y. Chen ◽  
H.Y. Chien ◽  
...  

Contamination of groundwater by petroleum-hydrocarbons is a serious environmental problem. The Monitored Natural Attenuation (MNA) approach is a passive remediation to degrade and dissipate groundwater contaminants in situ. In this study, a full-scale natural bioremediation investigation was conducted at a gasoline spill site. Results show that concentrations of major contaminants (benzene, toluene, ethylbenzene, and xylenes) dropped to below detection limit before they reached the downgradient monitor well located 280 m from the spill location. The results also reveal that natural biodegradation was the major cause of the observed contaminant reduction. The calculated natural first-order attenuation rates for BTEX and 1,2,4-trimethylbenzene (1,2,4-TMB) ranged from 0.051 (benzene) to 0.189 1/day (1,2,4-TMB). Evidence for the occurrence of natural attenuation includes the following: (1) depletion of dissolved oxygen, nitrate, and sulfate; (2) production of dissolved ferrous iron, sulfide, and CO2; (3) decreased BTEX concentrations and BTEX as carbon to TOC ratio along the transport path; (4) increased alkalinity and microbial populations; (5) limited spreading of the BTEX plume; and (6) preferential removal of certain BTEX components along the transport path. Additionally, the biodegradation capacity (44.73 mg/L) for BTEX and 1,2,4-TMB was much higher than other detected contaminants within the plume. Hence, natural attenuation can effectively contain the plume, and biodegradation processes played an important role in contaminant removal.


2013 ◽  
Vol 753-755 ◽  
pp. 2223-2226
Author(s):  
Hang Lv ◽  
Guang Yu Lin ◽  
Xiao Si Su ◽  
Ming Yao Liu ◽  
Nai Wang

Contamination of groundwater and soil by petroleum hydrocarbons is a widespread environmental problem. In order to quantify the potential of natural attenuation of groundwater at a petroleum contaminated site. The total petroleum hydrocarbons (TPH) concentrations of 11 rounds were collected during the 1 year monitoring period, and the mass flux technique is used to calculate the attenuation rates. The calculated attenuation rates are between 0.0046-0.0064d-1, which indicating the time to achieve the remediation goal for the contamination site is possible within 3 years by natural attenuation alone.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3400 ◽  
Author(s):  
Adam Truskewycz ◽  
Taylor D. Gundry ◽  
Leadin S. Khudur ◽  
Adam Kolobaric ◽  
Mohamed Taha ◽  
...  

Petroleum hydrocarbons represent the most frequent environmental contaminant. The introduction of petroleum hydrocarbons into a pristine environment immediately changes the nature of that environment, resulting in reduced ecosystem functionality. Natural attenuation represents the single, most important biological process which removes petroleum hydrocarbons from the environment. It is a process where microorganisms present at the site degrade the organic contaminants without the input of external bioremediation enhancers (i.e., electron donors, electron acceptors, other microorganisms or nutrients). So successful is this natural attenuation process that in environmental biotechnology, bioremediation has developed steadily over the past 50 years based on this natural biodegradation process. Bioremediation is recognized as the most environmentally friendly remediation approach for the removal of petroleum hydrocarbons from an environment as it does not require intensive chemical, mechanical, and costly interventions. However, it is under-utilized as a commercial remediation strategy due to incomplete hydrocarbon catabolism and lengthy remediation times when compared with rival technologies. This review aims to describe the fate of petroleum hydrocarbons in the environment and discuss their interactions with abiotic and biotic components of the environment under both aerobic and anaerobic conditions. Furthermore, the mechanisms for dealing with petroleum hydrocarbon contamination in the environment will be examined. When petroleum hydrocarbons contaminate land, they start to interact with its surrounding, including physical (dispersion), physiochemical (evaporation, dissolution, sorption), chemical (photo-oxidation, auto-oxidation), and biological (plant and microbial catabolism of hydrocarbons) interactions. As microorganism (including bacteria and fungi) play an important role in the degradation of petroleum hydrocarbons, investigations into the microbial communities within contaminated soils is essential for any bioremediation project. This review highlights the fate of petroleum hydrocarbons in tertial environments, as well as the contributions of different microbial consortia for optimum petroleum hydrocarbon bioremediation potential. The impact of high-throughput metagenomic sequencing in determining the underlying degradation mechanisms is also discussed. This knowledge will aid the development of more efficient, cost-effective commercial bioremediation technologies.


2021 ◽  
Author(s):  
Charles J. Newell ◽  
David T. Adamson ◽  
Poonam R. Kulkarni ◽  
Blossom N. Nzeribe ◽  
John A. Connor ◽  
...  

2001 ◽  
Vol 43 (2) ◽  
pp. 291-295 ◽  
Author(s):  
J. Vouillamoz ◽  
M. W. Milke

The effect of compost on phytoremediation of diesel-contaminated soils was investigated using 130 small (200 g) containers in two screening tests. The experiments were conducted in a controlled environment using ryegrass from seed. Containers were destructively sampled at various times and analyzed for plant mass and total petroleum hydrocarbons. The results indicate that the presence of diesel reduces grass growth, and that compost helps reduced the impact of diesel on grass growth. The addition of compost helps increase diesel loss from the soils both with and without grass, though the addition of grass leads to lower diesel levels compared with controls. A second set of experiments indicates that the compost helps in phytoremediation of diesel-contaminated soil independent of the dilution effect that compost addition has. The results indicate that the compost addition allowed diesel loss down to 200 mg TPH/kg even though the compost would be expected to hold the diesel more tightly in the soil/compost mixture. The simplicity of the screening tests led to difficulties in controlling moisture content and germination rates. The conclusion of the research is that the tilling of compost into soils combined with grass seeding appears to be a valuable option for treating petroleum-contaminated soils.


Sign in / Sign up

Export Citation Format

Share Document