Anthropogenic NOx emissions alter the intrinsic water-use efficiency (WUEi) for Quercus cerris stands under Mediterranean climate conditions

2010 ◽  
Vol 158 (9) ◽  
pp. 2841-2847 ◽  
Author(s):  
Rossella Guerrieri ◽  
Rolf Siegwolf ◽  
Matthias Saurer ◽  
Francesco Ripullone ◽  
Maurizio Mencuccini ◽  
...  
2018 ◽  
Vol 76 (2) ◽  
pp. 115-130 ◽  
Author(s):  
G Guo ◽  
K Fang ◽  
J Li ◽  
HW Linderholm ◽  
D Li ◽  
...  

Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 122 ◽  
Author(s):  
A. G. Condon ◽  
R. A. Richards ◽  
G. J. Rebetzke ◽  
G. D. Farquhar

2018 ◽  
Vol 36 (1) ◽  
pp. 7-13
Author(s):  
Melissa C. Smith ◽  
Richard N. Mack

Abstract Suitable plant water dynamics and the ability to withstand periods of low moisture input facilitate plant establishment in seasonally arid regions. Temperate bamboos are a major constituent of mixed evergreen and deciduous forests throughout temperate East Asia but play only an incidental role in North American forests and are altogether absent in the Pacific Northwest forest. Many bamboo species are classified as mesic or riparian, but none are considered drought tolerant. To assess their ability to withstand low water, we subjected five Asian temperate and one North American temperate bamboo species to three irrigation treatments: 100%, 50%, and 10% replacement of water lost through evapotranspiration. Plants were irrigated every four days over a 31-day period. Plant response to treatments was measured with stomatal conductance, leaf xylem water potentials, and intrinsic water use efficiency (iWUE). Pleioblastus distichus and Pseudosasa japonica showed significant reductions in conductance between high and low irrigation treatments. Sasa palmata had significantly lower stomatal conductance in all treatments. Pleioblastus chino displayed significantly higher iWUE in the mid irrigation treatment and Arunindaria gigantea displayed significantly lower iWUE than P. chino and S. palmata in the low irrigation treatment. The Asian bamboo species examined here tolerate low water availability and readily acclimate to different soil moisture conditions. Index words: Temperate bamboos, irrigation response, stomatal conductance, intrinsic water use efficiency. Species used in this study: Giant Cane [Arundinaria gigantea (Walt.) Muhl.]; Pleioblastus chino (Franchet & Savatier) Makino; Pleioblastus distichus (Mitford) Nakai; Pseudosasa japonica (Makino); Sasa palmata (Bean) Nakai.


2021 ◽  
pp. 1-12
Author(s):  
R. Dietrich ◽  
F.W. Bell ◽  
M. Anand

Given the large contribution of forests to terrestrial carbon storage, there is a need to resolve the environmental and physiological drivers of tree-level response to rising atmospheric CO2. This study examines how site-level soil moisture influences growth and intrinsic water-use efficiency in sugar maple (Acer saccharum Marsh.). We construct tree-ring, δ18O, and Δ13C chronologies for trees across a soil moisture gradient in Ontario, Canada, and employ a structural equation modelling approach to ascertain their climatic, ontogenetic, and environmental drivers. Our results support previous evidence for the presence of strong developmental effects in tree-ring isotopic chronologies — in the range of −4.7‰ for Δ13C and +0.8‰ for δ18O — across the tree life span. Additionally, we show that the physiological response of sugar maple to increasing atmospheric CO2 depends on site-level soil moisture variability, with trees only in relatively wet plots exhibiting temporal increases in intrinsic water-use efficiency. These results suggest that trees in wet and mesic plots have experienced temporal increases in stomatal conductance and photosynthetic capacity, whereas trees in dry plots have experienced decreases in photosynthetic capacity. This study is the first to examine sugar maple physiology using a dendroisotopic approach and broadens our understanding of carbon–water interactions in temperate forests.


Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 14 ◽  
Author(s):  
Maricar Aguilos ◽  
Clément Stahl ◽  
Benoit Burban ◽  
Bruno Hérault ◽  
Elodie Courtois ◽  
...  

Warmer and drier climates over Amazonia have been predicted for the next century with expected changes in regional water and carbon cycles. We examined the impact of interannual and seasonal variations in climate conditions on ecosystem-level evapotranspiration (ET) and water use efficiency (WUE) to determine key climatic drivers and anticipate the response of these ecosystems to climate change. We used daily climate and eddyflux data recorded at the Guyaflux site in French Guiana from 2004 to 2014. ET and WUE exhibited weak interannual variability. The main climatic driver of ET and WUE was global radiation (Rg), but relative extractable water (REW) and soil temperature (Ts) did also contribute. At the seasonal scale, ET and WUE showed a modal pattern driven by Rg, with maximum values for ET in July and August and for WUE at the beginning of the year. By removing radiation effects during water depleted periods, we showed that soil water stress strongly reduced ET. In contrast, drought conditions enhanced radiation-normalized WUE in almost all the years, suggesting that the lack of soil water had a more severe effect on ecosystem evapotranspiration than on photosynthesis. Our results are of major concern for tropical ecosystem modeling because they suggest that under future climate conditions, tropical forest ecosystems will be able to simultaneously adjust CO2 and H2O fluxes. Yet, for tropical forests under future conditions, the direction of change in WUE at the ecosystem scale is hard to predict, since the impact of radiation on WUE is counterbalanced by adjustments to soil water limitations. Developing mechanistic models that fully integrate the processes associated with CO2 and H2O flux control should help researchers understand and simulate future functional adjustments in these ecosystems.


2017 ◽  
Vol 389 ◽  
pp. 285-295 ◽  
Author(s):  
Eladio H. Cornejo-Oviedo ◽  
Steven L. Voelker ◽  
Douglas B. Mainwaring ◽  
Douglas A. Maguire ◽  
Frederick C. Meinzer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document