carbon cycles
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 115)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Vol 9 ◽  
Author(s):  
Carrington Moore ◽  
Difan Zhang ◽  
Roger Rousseau ◽  
Vassiliki-Alexandra Glezakou ◽  
Jean-Sabin McEwen

As climate change continues to pose a threat to the Earth due to the disrupted carbon cycles and fossil fuel resources remain finite, new sources of sustainable hydrocarbons must be explored. 2,3-butanediol is a potential source to produce butene because of its sustainability as a biomass-derived sugar. Butene is an attractive product because it can be used as a precursor to jet fuel, categorizing this work in the alcohol-to-jet pathway. While studies have explored the conversion of 2,3-butanediol to butene, little is understood about the fundamental reaction itself. We quantify the energetics for three pathways that were reported in the literature in the absence of a catalyst. One of these pathways forms a 1,3-butadiene intermediate, which is a highly exothermic process and thus is unlikely to occur since 2,3-butanediol likely gets thermodynamically trapped at this intermediate. We further determined the corresponding energetics of 2,3-butanediol adsorption on an ensemble of predetermined binding sites when it interacts with a defect-free stoichiometric RuO2(110) surface. Within this ensemble of adsorption sites, the most favorable site has 2,3-butanediol covering a Ru 5–coordinated cation. This approach is compared to that obtained using the global optimization algorithm as implemented in the Northwest Potential Energy Surface Search Engine. When using such a global optimization algorithm, we determined a more favorable ground-state structure that was missed during the manual adsorption site testing, with an adsorption energy of −2.61 eV as compared to −2.34 eV when using the ensemble-based approach. We hypothesize that the dehydration reaction requires a stronger chemical bond, which could necessitate the formation of oxygen vacancies. As such, this study has taken the first step toward the utilization of a global optimization algorithm for the rational design of Ru-based catalysts toward the formation of butene from sustainable resources.


2022 ◽  
Author(s):  
Michael R Stukel ◽  
Oscar M. E. Schofield ◽  
Hugh W. Ducklow

238U-234Th disequilibrium is a powerful tool for investigating particle cycling and carbon export associated with the ocean's biological carbon pump. However, the interpretation of this method is complicated by multiple processes that can modify carbon:thorium ratios over small spatial scales. We investigated seasonal variability in the thorium and carbon cycles at a coastal site in the Western Antarctic Peninsula. Throughout the ice-free summer season, we quantified carbon and 234Th vertical flux, total water column 234Th, particulate 234Th, and the C:234Th ratios of sinking material and bulk suspended material. Simultaneous identification and separation of fecal pellets from sinking material showed that fecal pellets (primarily from krill) contributed 56% of carbon flux and that as a result of lower C:234Th ratios than suspended particles, these fecal pellets were primary drivers of variability in the C:234Th ratios of sinking material. Bulk suspended particles had highly variable C:234Th ratios and were consistently elevated in the euphotic zone relative to deeper waters. The fraction of 234Th adsorbed onto particles was positively correlated with chlorophyll and particulate organic carbon (POC) concentrations. The C:234Th ratios of suspended particles were positively correlated with POC, although during the spring diatom bloom C:234Th ratios were lower than would have been predicted based on POC concentrations alone. We hypothesize that diatom production of transparent exopolymers may have led to enhanced rates of thorium adsorption during the bloom, thus decreasing the C:234Th ratios. We used a Bayesian model selection approach to develop and parameterize mechanistic models to simulate thorium sorption dynamics. The best model incorporated one slowly-sinking POC pool and rapidly-sinking fecal pellets, with second-order sorption kinetics. The model accurately simulated temporal patterns in the C:234Th ratios of sinking and suspended particles and the fraction of 234Th adsorbed to particles. However, it slightly over-estimated C:234Th ratios during the spring (diatom-dominated) bloom and underestimated C:234Th ratios during the fall (mixed-assemblage) bloom. Optimized model parameters for thorium sorption and desorption were 0.0047 +/- 0.0002 m3 mmol C-1 d-1 and 0.017 +/- 0.008 d-1, respectively. Our results highlight the important role that specific taxa can play in modifying the C:234Th ratio of sinking and suspended particles and provide guidance for future studies that use 234Th measurements to investigate the functional relationships driving the efficiency of the biological pump.


2022 ◽  
Vol 9 ◽  
Author(s):  
Qiao Chen ◽  
Pengpeng Zhang ◽  
Ziyuan Hu ◽  
Sha Li ◽  
Yongshuai Zhang ◽  
...  

Soil organic carbon (SOC) is significant for soil quality and global carbon cycles. SOC was observed to be related to soil geochemistry, and soils originating from different bedrocks have different geochemical properties, but the effect of bedrock on SOC is still undefined. Soils overlying different bedrocks in Zhenxiong County and Weixin County were sampled. Specifically, soils in the mineral horizon, which are less affected by the external environment than surface soils, are focused on to reveal the effect of bedrock on SOC. Al/Ti, Fe/Ti, and Al/Fe indicate a soil–rock successive relationship. SOC contents in the mineral horizon are 0.19–2.74% (1.24% on average), and those in the surface horizon are 1.26–4.01% (2.63% on average). SOC contents in the surface and mineral horizons of the same bedrock are significantly positively correlated, implying that the bedrock is an important factor affecting SOC. SOC in the mineral horizon is related to the first transition metal ions. Significantly, positive correlations of SOC (p < 0.01) with Co, Cu, Ti, V, and Zn, and a positive correlation (p < 0.05) with Ni were observed in the mineral horizon. Organic transition metal complexation seems to play an important role in governing SOC in the mineral horizon. That is, the complexation maintains organic carbon stability, slows down its decomposition rate, and accumulates organic carbon. The Ca–SOC positive correlation in the mineral horizon exits because Ca also can complex with organic carbon. Co, Cu, and V–SOC positive correlations (p < 0.05) were also observed, but there were no significant positive correlations (p < 0.01) in the surface horizon because surface SOC had diversified sources. An SOC evolution model influenced by the bedrock was forwarded. Thus, the different soil geochemistry originating from different bedrocks should be noticed when SOC and global carbon cycles are discussed.


Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 47-56
Author(s):  
V. V. Strelko ◽  
◽  
Yu. I. Gorlov ◽  
E. M. Demianenko ◽  
◽  
...  

The aim of the study was to investigate the effect of heteroatoms on the deformation of graphene, as well as on the formation of the Stone-Wallace defect. To date, research on processes involving nanocarbon materials is relevant. In particular, in the formation of fullerenes, nanoonions and a number of other carbon nanoforms, the five-membered carbon cycles (pentactagonis) of the hepatogenesis (pentactagon) play the most important role in the curvature of initially flat graphene sheets and the formation of fullerene-like structures in the form of closed, skeletal, macromolecular formations. It should be noted, however, that the Pentagon is not the only factor in distorting the flat structure of graphene sheets in layered carbon materials. Some other defects of the carbon lattice (in particular, seven-membered carbon cycles and heteroatoms of a number of nonmetals with covalent radii exceeding the radius of the carbon atom) may play a similar role to one degree or another. These heteroatoms (primarily Si, P, S) are usually part of the precursors of mineral or vegetable origin and can be embedded in the carbon lattice in the process of coal production. Stone-Wallace there is their mutual compensation and preservation of a flat structure. The calculations were performed using quantum chemical modeling of doped nanographs in clusters of different size, composition and morphology, using the theory of density functional (DFT) with exchange-correlation functional B3LYP, based on the extended valence-split basis 6-31G (d) with full optimism clusters using the Firefly software package. It has been found that heteroatoms of non-metals with covalent radii exceeding the radius of the C atom, which are usually present in the precursors of mineral or vegetable origin used to produce pyrolyzed carbon materials, can play a significant role in energy. a number of nanoforms of carbon, activated carbon and other pyrolyzed nanostructured carbon materials.


2021 ◽  
Vol 177 (1) ◽  
Author(s):  
Xueqian Chen ◽  
Meili Wang ◽  
Toru Inoue ◽  
Qiong Liu ◽  
Lifei Zhang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
JiHyun Kim ◽  
Yeonjoo Kim ◽  
Donatella Zona ◽  
Walter Oechel ◽  
Sang-Jong Park ◽  
...  

AbstractThe ongoing disproportionate increases in temperature and precipitation over the Arctic region may greatly alter the latitudinal gradients in greenup and snowmelt timings as well as associated carbon dynamics of tundra ecosystems. Here we use remotely-sensed and ground-based datasets and model results embedding snowmelt timing in phenology at seven tundra flux tower sites in Alaska during 2001–2018, showing that the carbon response to early greenup or delayed snowmelt varies greatly depending upon local climatic limits. Increases in net ecosystem productivity (NEP) due to early greenup were amplified at the higher latitudes where temperature and water strongly colimit vegetation growth, while NEP decreases due to delayed snowmelt were alleviated by a relief of water stress. Given the high likelihood of more frequent delayed snowmelt at higher latitudes, this study highlights the importance of understanding the role of snowmelt timing in vegetation growth and terrestrial carbon cycles across warming Arctic ecosystems.


2021 ◽  
Author(s):  
Dimitra Sakoula ◽  
Garrett J. Smith ◽  
Jeroen Frank ◽  
Rob J. Mesman ◽  
Linnea F. M. Kop ◽  
...  

AbstractThe advance of metagenomics in combination with intricate cultivation approaches has facilitated the discovery of novel ammonia-, methane-, and other short-chain alkane-oxidizing microorganisms, indicating that our understanding of the microbial biodiversity within the biogeochemical nitrogen and carbon cycles still is incomplete. The in situ detection and phylogenetic identification of novel ammonia- and alkane-oxidizing bacteria remain challenging due to their naturally low abundances and difficulties in obtaining new isolates from complex samples. Here, we describe an activity-based protein profiling protocol allowing cultivation-independent unveiling of ammonia- and alkane-oxidizing bacteria. In this protocol, 1,7-octadiyne is used as a bifunctional enzyme probe that, in combination with a highly specific alkyne-azide cycloaddition reaction, enables the fluorescent or biotin labeling of cells harboring active ammonia and alkane monooxygenases. Biotinylation of these enzymes in combination with immunogold labeling revealed the subcellular localization of the tagged proteins, which corroborated expected enzyme targets in model strains. In addition, fluorescent labeling of cells harboring active ammonia or alkane monooxygenases provided a direct link of these functional lifestyles to phylogenetic identification when combined with fluorescence in situ hybridization. Furthermore, we show that this activity-based labeling protocol can be successfully coupled with fluorescence-activated cell sorting for the enrichment of nitrifiers and alkane-oxidizing bacteria from complex environmental samples, enabling the recovery of high-quality metagenome-assembled genomes. In conclusion, this study demonstrates a novel, functional tagging technique for the reliable detection, identification, and enrichment of ammonia- and alkane-oxidizing bacteria present in complex microbial communities.


Sign in / Sign up

Export Citation Format

Share Document