Turning harmful algal biomass to electricity by microbial fuel cell: A sustainable approach for waste management

2020 ◽  
Vol 266 ◽  
pp. 115373
Author(s):  
Jafar Ali ◽  
Lei Wang ◽  
Hassan Waseem ◽  
Bo Song ◽  
Ridha Djellabi ◽  
...  
Author(s):  
Priyanka Mishra ◽  
Sidharth Mishra ◽  
Devi Swain ◽  
Chinmaya Bhuyan ◽  
Rahul Nanotkar ◽  
...  

Author(s):  
Soraya Annisa Putri ◽  
Akbar Nugroho Confera ◽  
Syafrudin Syafrudin ◽  
Bimastyaji Surya Ramadan

Organic waste is a type of waste produced by many sector, which need to managed appropriately. During its development, composting is one of the organic waste management efforts that is often be applied, Another alternative organic waste management in the form of Microbial Fuel Cell (MFC) has emerged. Several researchers conducted studies on MFC performance which was influenced by many factors, especially the electrode which contributes to the electron transfer process. This study has a concern about energy optimization through CSMFC technology using different electrode’s material. Electrode materials from Graphene and Graphit has good electro-conductivity and has a large surface area, making it suitable for bacteria to adhere. The sampled reactors are consists of two types of electrodes  in the form of graphite and graphene. Each materials has anode and cathode ratio of 1:1, 2:1, and 3:1. The samples measured into three kinds, which called a mature compost measurement, electrochemical measurement, and biochemical measurement. Some collected sampling data were then processed and analyzed statistically using SPSS software. The processed and analyzed data included the calculation of power density, total N, C/N ratio, and moisture content. Any data like voltage (V) and electric current (I) are needed to obtain a power density. The highest average voltage, current, power and power density are produced by the N3 reactor (graphene 3:1) that is 269 x 10-3 V, 163 x 10-6 A, 56 x 10-6 Watt and 1.914 x 10-3 W / m2. There is no significant effect of variations in the type of electrode (graphite and graphene) on CSMFC performances.


Renewable energy plays an important role in future energy planning. Due to the changes in environment, shortage of fossil fuel, increase in carbon foot printing and the rising demand of sustainable energy generation there is a need of new energy generation resources and research. Hence, the main aim of proposed research is to develop microbial fuel cell for clean energy generation. There is a need of alternative energy sources with less cost to meet the future energy demands. Also, the waste management is a bigger issue around the globe. As Microbial Fuel Cells (MFCs) are less expensive and are with zero carbon foot printing it is considered as an emerging clean and alternative mean of energy generation. Also, the waste management is becoming important issue. To utilize waste material for energy generation is possible with bacteria present in waste material. The proposed research tested microbial fuel cell for household waste with use of carbon cloth electrodes. This paper presents the microbial fuel cell processes for different types of waste materials and pilot project execution is successful in terms of energy generation. The aim of the development of duel chamber microbial fuel cell is to contribute to the household electrification at pilot project level and further to that analyze the feasibility for future enhancements. The paper discusses the detail execution methodology for efficient use of waste materials in semi-solid and liquid form. The proposed research will be very useful as a source of renewable energy. More precisely, in future it is possible to generate independent household electrification with such options.


Sign in / Sign up

Export Citation Format

Share Document