SPATIO-TEMPORAL CHARACTERIZATION of litter at a touristic sandy beach in south Brazil

2021 ◽  
pp. 116927
Author(s):  
Bruna de Ramos ◽  
Melanie Vianna Alencar ◽  
Fábio Lameiro Rodrigues ◽  
Ana Luzia de Figueiredo Lacerda ◽  
Maíra Carneiro Proietti
2020 ◽  
Vol 79 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Danijela Stešević ◽  
Filip Küzmič ◽  
Đorđije Milanović ◽  
Milica Stanišić-Vujačić ◽  
Urban Šilc

Velika plaža (Ulcinj, Montenegro) is the largest sandy beach along the coast of the eastern Adriatic that still has well-developed sand-dune vegetation. Although the characterization of the flora and vegetation of Velika plaža has been addressed by many authors, knowledge on its vegetation remained poor. We made a phytosociological study of sand beach vegetation comprising both dunal and wetland areas to provide a comprehensive survey of sand dune vegetation and habitat typology of Velika plaža. Based on 149 relevés (both from literature and recent field work), and with numerical classification (Flexible beta) and ordination (Non-metric multidimensional scaling) our results show that the vegetation of Velika plaža is much more diverse than previously known. Altogether, 19 plant communities from 6 vegetation classes were identified. Among them we described two new associations: Cuscuto cesatianae-Phyletum nodiflorae and Onobrychido caput-galli-Vulpietum fasciculatae.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giulia Tedeschi ◽  
Lorenzo Scipioni ◽  
Maria Papanikolaou ◽  
Geoffrey W. Abbott ◽  
Michelle A. Digman

AbstractVoltage-gated potassium (Kv) channels are a family of membrane proteins that facilitate K+ ion diffusion across the plasma membrane, regulating both resting and action potentials. Kv channels comprise four pore-forming α subunits, each with a voltage sensing domain, and they are regulated by interaction with β subunits such as those belonging to the KCNE family. Here we conducted a comprehensive biophysical characterization of stoichiometry and protein diffusion across the plasma membrane of the epithelial KCNQ1-KCNE2 complex, combining total internal reflection fluorescence (TIRF) microscopy and a series of complementary Fluorescence Fluctuation Spectroscopy (FFS) techniques. Using this approach, we found that KCNQ1-KCNE2 has a predominant 4:4 stoichiometry, while non-bound KCNE2 subunits are mostly present as dimers in the plasma membrane. At the same time, we identified unique spatio-temporal diffusion modalities and nano-environment organization for each channel subunit. These findings improve our understanding of KCNQ1-KCNE2 channel function and suggest strategies for elucidating the subunit stoichiometry and forces directing localization and diffusion of ion channel complexes in general.


2021 ◽  
Vol 58 (2) ◽  
pp. 281-299
Author(s):  
Somnath Bar ◽  
Bikash Ranjan Parida ◽  
Gareth Roberts ◽  
Arvind Chandra Pandey ◽  
Prasenjit Acharya ◽  
...  

Author(s):  
Ioannis T. Georgiou

A local damage at the tip of a composite propeller is diagnosed by properly comparing its impact-induced free coupled dynamics to that of a pristine wooden propeller of the same size and shape. This is accomplished by creating indirectly via collocated measurements distributed information for the coupled acceleration field of the propellers. The powerful data-driven modal expansion analysis delivered by the Proper Orthogonal Decomposition (POD) Transform reveals that ensembles of impact-induced collocated coupled experimental acceleration signals are underlined by a high level of spatio-temporal coherence. Thus they furnish a valuable spatio-temporal sample of coupled response induced by a point impulse. In view of this fact, a tri-axial sensor was placed on the propeller hub to collect collocated coupled acceleration signals induced via modal hammer nondestructive impacts and thus obtained a reduced order characterization of the coupled free dynamics. This experimental data-driven analysis reveals that the in-plane unit components of the POD modes for both propellers have similar shapes-nearly identical. For the damaged propeller this POD shape-difference is quite pronounced. The shapes of the POD modes are used to compute indices of difference reflecting directly damage. At the first POD energy level, the shape-difference indices of the damaged composite propeller are quite larger than those of the pristine wooden propeller.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Xin Wang ◽  
António Pinto-Duarte ◽  
M. Margarita Behrens ◽  
Xianjin Zhou ◽  
Terrence J. Sejnowski

2016 ◽  
Author(s):  
James Kilpatrick ◽  
Adela Apostol ◽  
Anatoliy Khizhnya ◽  
Vladimir Markov ◽  
Leonid Beresnev

Sign in / Sign up

Export Citation Format

Share Document