Climate change and drinking water quality: Predicting high trihalomethane occurrence in water utilities supplied by surface water

2019 ◽  
Vol 120 ◽  
pp. 104479 ◽  
Author(s):  
Geneviève Cool ◽  
Ianis Delpla ◽  
Pierre Gagnon ◽  
Alexandre Lebel ◽  
Rehan Sadiq ◽  
...  
2005 ◽  
Vol 5 (2) ◽  
pp. 123-134 ◽  
Author(s):  
R. Miller ◽  
B. Whitehill ◽  
D. Deere

This paper comments on the strengths and weaknesses of different methodologies for risk assessment, appropriate for utilisation by Australian Water Utilities in risk assessment for drinking water source protection areas. It is intended that a suggested methodology be recommended as a national approach to catchment risk assessment. Catchment risk management is a process for setting priorities for protecting drinking water quality in source water areas. It is structured through a series of steps for identifying water quality hazards, assessing the threat posed, and prioritizing actions to address the threat. Water management organisations around Australia are at various stages of developing programs for catchment risk management. While much conceptual work has been done on the individual components of catchment risk management, work on these components has not previously been combined to form a management tool for source water protection. A key driver for this project has been the requirements of the National Health and Medical Research Council Framework for the Management of Drinking Water Quality (DWQMF) included in the draft 2002 Australian Drinking Water Guidelines (ADWG). The Framework outlines a quality management system of steps for the Australian water industry to follow with checks and balances to ensure water quality is protected from catchment to tap. Key steps in the Framework that relate to this project are as follows: Element 2 Assessment of the Drinking Water Supply System• Water Supply System analysis• Review of Water Quality Data• Hazard Identification and Risk Assessment Element 3 Preventive Measures for Drinking Water Quality Management• Preventive Measures and Multiple Barriers• Critical Control Points This paper provides an evaluation of the following risk assessment techniques: Hazard Analysis and Critical Control Points (HACCP); World Health Organisation Water Safety Plans; Australian Standard AS 4360; and The Australian Drinking Water Guidelines – Drinking Water Quality Management Framework. These methods were selected for assessment in this report as they provided coverage of the different approaches being used across Australia by water utilities of varying: scale of water management organisation; types of water supply system management; and land use and activity-based risks in the catchment area of the source. Initially, different risk assessment methodologies were identified and reviewed. Then examples of applications of those methods were assessed, based on several key water utilities across Australia and overseas. Strengths and weaknesses of each approach were identified. In general there seems some general grouping of types of approaches into those that: cover the full catchment-to-tap drinking water system; cover just the catchment area of the source and do not recognise downstream barriers or processes; use water quality data or land use risks as a key driving component; and are based primarily on the hazard whilst others are based on a hazardous event. It is considered that an initial process of screening water quality data is very valuable in determining key water quality issues and guiding the risk assessment, and to the overall understanding of the catchment and water source area, allowing consistency with the intentions behind the ADWG DWQM Framework. As such, it is suggested that the recommended national risk assessment approach has two key introductory steps: initial screening of key issues via water quality data, and land use or activity scenario and event-based HACCP-style risk assessment. In addition, the importance of recognising the roles that uncertainty and bias plays in risk assessments was highlighted. As such it was deemed necessary to develop and integrate uncertainty guidelines for information used in the risk assessment process. A hybrid risk assessment methodology was developed, based on the HACCP approach, but with some key additions and modifications to make it applicable to varying catchment risks, water supply operation needs and environmental management processes.


2013 ◽  
Author(s):  
Melinda Haydee Kovacs ◽  
Dumitru Ristoiu ◽  
Cezara Voica ◽  
Zaharie Moldovan

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2437
Author(s):  
Alec Rolston ◽  
Suzanne Linnane

Source protection is part of a multi-solution approach for the provision of safe drinking water. In the Republic of Ireland, community-led Group Water Schemes (GWS) provide treated drinking water to approximately 69,000 rural households. Between 2009 and 2019, preliminary source protection assessments were undertaken for 70 GWS abstracting from surface water sources to provide physical catchment characterisation and untreated and treated water quality analysis. Catchment areas upstream of abstraction points varied in size, with 51.5% being less than 5 km2 and only 10.7% being larger than 100 km2. The majority (91%) of assessed GWS serve a population of less than 3000 people, and 94% supply less than 1500 m3 per day. Exceedances of the EU Drinking Water Regulations were recorded for 27 parameters, with the greatest number of exceedances due to total trihalomethanes followed by microbial contamination. The most frequent recommendation for improving GWS drinking water quality was associated with managing livestock access to local water bodies. Improving stakeholder engagement represented 38% of all recommendations made. Drinking water source protection measures and catchment-scale actions can be an additional model to assist in the delivery of Integrated Catchment Management and river basin management planning in the Republic of Ireland. For the GWS sector, challenges lie in securing resources to improve both source water and drinking water quality to deliver integrated catchment management plans for source protection.


Author(s):  
David Eugene Kimbrough

In this study, air temperatures were collected between 1985 and 2016 and compared to water temperatures in four locations in the distribution system of Pasadena Water & Power (PWP) that received imported surface water between 2001 and 2016 and from the purveyor of imported water.  The concentration of chloramine residual and nitrite concentrations were collected between 2001 and 2016 these five locations.  The results indicate that the median nighttime temperature of the period 2009 - 2016 was 1.6 oC warmer than the period of 1985 - 2000 and 0.5 oC warmer than the period 2001 - 2008.  The median water temperature in the four distribution system samples increased by 0.8 oC to 1.4 oC depending on the location over the study period (p<0.001).  The median chloramine concentration fell significantly (p<0.001) at three distribution system locations and the nitrite concentrations increased significantly at all four distribution system locations. 


2019 ◽  
Vol 17 (6) ◽  
pp. 989-1001
Author(s):  
Harold van den Berg ◽  
Bettina Rickert ◽  
Seada Ibrahim ◽  
Kasa Bekure ◽  
Hailu Gichile ◽  
...  

Abstract Unsafe drinking water is a recognized health threat in Ethiopia, and climate change, rapid population growth, urbanization and agricultural practices put intense pressure on availability and quality of water. Climate change-related health problems due to floods and waterborne diseases are increasing. With increasing insight into impacts of climate change and urbanization on water availability and quality and of required adaptations, a shift towards climate-resilient water safety planning was introduced into an Ethiopian strategy and guidance document to guarantee safe drinking water. Climate-resilient water safety planning was implemented in the urban water supplies of Addis Ababa and Adama, providing drinking water to 5 million and 500,000 people, respectively. Based on the risks identified with climate-resilient water safety planning, water quality monitoring can be optimized by prioritizing parameters and events which pose a higher risk for contaminating the drinking water. Water quality monitoring was improved at both drinking water utilities and at the Public Health Institute to provide relevant data used as input for climate-resilient water safety planning. By continuously linking water quality monitoring and climate-resilient water safety planning, utilization of information was optimized, and both approaches benefit from linking these activities.


Sign in / Sign up

Export Citation Format

Share Document