drinking water production
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 92)

H-INDEX

37
(FIVE YEARS 5)

2021 ◽  
Vol 18 (4) ◽  
pp. 143-152
Author(s):  
D. O. Tsymbal ◽  
M. E. Mazanik

Objective. To evaluate the effectiveness of photocatalytic methods of oxidation of organic substances for the preparation of drinking water. To show the expediency of the use of the described method for the design of wastewater treatment facilities.Materials and methods. The oxidation degrees of 58 organic substances of various hazard classes were studied. The sampling frame was based on two characteristics: origin (biological and artificial) and the oxidation state stated in different sources.Results. A high efficiency of photocatalysis for the destruction of organic substances in wastewater from various industries has been shown: the degrees of oxidation range from 70 to 100 %.Conclusion. Photocatalysis can be used to design wastewater treatment facilities with a view to reducing the probability of biological pollution of natural waters intended for drinking water production.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3087
Author(s):  
Zhen Zhang ◽  
Shizheng Jiang ◽  
Haonan Chen ◽  
Hao Qi ◽  
Yali Chen ◽  
...  

Water is an important source for humankind. However, the amount of available clean water has rapidly reduced worldwide. To combat this issue, the solar-energy-driven evaporation technique is newly proposed to produce clean water. Here, biochar derived from sorghum stalk with a multi-level pore bundle structure is utilized to fabricate a solar-driven evaporator for the first time. The biochar displays rapid water transfer and low thermal conductivity (ca. 0.0405 W m−1 K−1), which is vitally important for such an application purpose. The evaporation rate and energy conversion efficiency of the solar evaporator based on carbonized sorghum stalk can achieve up to 3.173 kg m−2 h−1 and 100%, respectively, which are better than most of the previously reported biomass materials. Furthermore, the carbonized sorghum stalk also displays good resistance to salt crystallization, anti-acidic/basic, and organic pollutants by producing drinking water using seawater, acidic/basic waste water, and organic polluted water, respectively. The direct application of processed water in food production was also investigated. The present solar steam evaporator based on the carbonized sorghum stalk has the potential to create practical drinking water production by using various water sources.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Maria Yu ◽  
Elin Lavonen ◽  
Agneta Oskarsson ◽  
Johan Lundqvist

Abstract Background Bioanalytical tools have been shown to be useful in drinking water quality assessments. Here, we applied a panel of in vitro bioassays to assess the treatment efficiency of two pilot-scale treatments: ozonation and granular activated carbon (GAC) filtration at a drinking water treatment plant (DWTP). The pilot-scale systems were studied alongside a full-scale treatment process consisting of biological activated carbon (BAC) filtration, UV disinfection, and monochloramine dosing. Both systems were fed the same raw water treated with coagulation/flocculation/sedimentation and sand filtration. The endpoints studied were oxidative stress (Nrf2 activity), genotoxicity (micronuclei formations), aryl hydrocarbon receptor (AhR) activation, as well as estrogen receptor (ER) and androgen receptor (AR) activity. Results Nrf2, AhR, and ER activities and genotoxic effects were detected in the incoming raw water and variability was observed between the sampling events. Compared to most of the samples taken from the full-scale treatment system, lower Nrf2, AhR, and ER bioactivities as well as genotoxicity were observed in all samples from the pilot-scale systems across all sampling events. The most pronounced treatment effect was a 12-fold reduction in Nrf2 activity and a sixfold decrease in micronuclei formations following ozonation alone. GAC filtration alone resulted in sevenfold and fivefold reductions in Nrf2 activity and genotoxicity, respectively, in the same sampling event. Higher bioactivities were detected in most samples from the full-scale system suggesting a lack of treatment effect. No androgenic nor anti-androgenic activities were observed in any sample across all sampling events. Conclusions Using effect-based methods, we have shown the presence of bioactive chemicals in the raw water used for drinking water production, including oxidative stress, AhR and ER activities as well as genotoxicity. The currently used treatment technologies were unable to fully remove the observed bioactivities. Ozonation and GAC filtration showed a high treatment efficiency and were able to consistently remove the bioactivities observed in the incoming water. This is important knowledge for the optimization of existing drinking water treatment designs and the utilization of alternative treatment technologies.


Author(s):  
Thomas Etcheberry ◽  
Matthieu Peyre Lavigne ◽  
Rosalia Trias ◽  
Stéphane Brunner ◽  
Juan Torres Zuluaga ◽  
...  

Abstract In drinking water production from groundwaters, biological rapid sand filters can be used for ammonium and manganese removal in aerobic conditions. However, in some boreholes, a start-up duration of several months is required to reach the required removal capacity, leading to significant water losses. Moreover, in specific industrial cases no exogenous biomass under the form of backwash water or activated sludge can be added to accelerate the process, and different approaches are seldom considered in literature. With the aim of saving water, start-up strategies coupling water temperature increase and substrate dosing were studied to accelerate the installation of biological activities, in a pilot plant fed with borehole water. These set-ups enabled a substantial acceleration of nitrification but no improvement of manganese oxidation in the experimental conditions, although the experiments showed no clear negative influence of nitrification, through nitrite accumulation, on biological manganese oxidation. To further save energy and reduce water loss, outlet water recirculation at a rate of 75% during the start-up phase was validated. The proposed start-up strategy enabled the complete installation of active biofilms with a mean start-up time reduction of 36% and water use reduction of 84% compared to the reference natural conditions.


Sign in / Sign up

Export Citation Format

Share Document