The climate of the Late Cretaceous: New insights from the application of the carbonate clumped isotope thermometer to Western Interior Seaway macrofossil

2013 ◽  
Vol 362 ◽  
pp. 51-65 ◽  
Author(s):  
K.J. Dennis ◽  
J.K. Cochran ◽  
N.H. Landman ◽  
D.P. Schrag
Author(s):  
Yang Gao ◽  
Gregory A. Henkes ◽  
J. Kirk Cochran ◽  
Neil H. Landman

Methane seep deposits, comprising large, carbonate-rich mounds formed from hydrocarbon seepage, were widely distributed in the Late Cretaceous Western Interior Seaway (WIS) of North America. Well-preserved, methane-derived authigenic carbonates (MDACs) from these deposits have been shown to retain petrological, paleontological, and geochemical imprints of their ancient depositional setting, all of which are important for understanding the dynamics and evolution of the shallow, epeiric WIS. To better characterize the environmental conditions of WIS seeps, we applied clumped isotope paleothermometry to magnesium calcite MDAC samples from five seep localities in the upper Campanian Pierre Shale, South Dakota, USA. We measured 21 subsamples, including 18 micritic carbonates and demonstrated apparent clumped isotope equilibrium between MDACs and WIS bottom waters. Extreme 13C depletion in most samples (δ13C ranging to −45.44‰) indicates they were precipitated with oxidized methane as a major source of dissolved inorganic carbon, which itself implies a close association with ancient methanotrophic metabolism. The average clumped isotope paleotemperature from the micritic carbonates is 23 ± 7 °C (1σ standard deviation), which agrees with bottom water paleotemperatures inferred from δ18O measurements of MDACs and well-preserved mollusk shells at similar localities in the WIS. The calculated average δ18Ow value for these samples is −0.5 ± 1.7‰ (1σ SD), which is indistinguishable from previously reported calculation on Campanian seawater δ18Ow from fossil mollusk shells, but elevated above younger fossils collected from other locations in the WIS. Our conclusions are inconsistent with previously hypothesized disequilibrium for WIS MDAC clumped isotope and therefore we propose that fossil MDAC deposits may be used as paleotemperature archives.


2018 ◽  
Author(s):  
Alison J. Rowe ◽  
◽  
Neil H. Landman ◽  
Matthew P. Garb ◽  
James D. Witts ◽  
...  

Heliyon ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. e05265
Author(s):  
Amzad H. Laskar ◽  
Dhananjay Mohabey ◽  
Sourendra K. Bhattacharya ◽  
Mao-Chang Liang

1992 ◽  
Vol 6 ◽  
pp. 132-132
Author(s):  
Thomas R. Holtz

It has often been assumed that the intensively studied dinosaur faunal assemblages of western North America and the Gobi Desert of Mongolia and China represent “typical” Late Cretaceous terrestrial vertebrate communities. This assumption has led to a paleoecological scenario in which a global ecological shift occurs from the dominance of high-browsing saurischian (i.e., sauropod) to low-browsing ornithischian (i.e., iguanodontian, marginocephalian, ankylosaurian) herbivore communities. Furthermore, the assumption that the Asiamerican dinosaur faunas are communities “typical” of the Late Cretaceous has forced the conclusion that the sauropod-dominated Argentine population must have been an isolated relict ecosystem of primitive taxa (i.e., titanosaurid sauropods, abelisaurid ceratosaurs). Recent discoveries and reinterpretations of other Late Cretaceous assemblages, however, seriously challenge these assumptions.Paleogeography and paleobiogeography have demonstrated that terrestrial landmasses became progressively fractionated from the Late Jurassic (Kimmeridgian-Tithonian) to the Late Cretaceous (Campanian), owing to continental drift and the development of large epicontinental seas (the Western Interior Seaway, the Turgai Sea, etc.). The Maastrichtian regressions resulted in the reestablishment of land connection between long isolated regions (for example, western and eastern North America). These geographic changes are reflected in changes in the dinosaurian faunas. These assemblages were rather cosmopolitan in the Late Jurassic (Morrison, Tendaguru, and Upper Shaximiao Formations) but became more provincialized throughout the Cretaceous.Cluster analysis of presence/absence data for the theropod, sauropod, and ornithischian clades indicates that previous assumptions for Late Cretaceous dinosaurian paleoecology are largely in error. These analyses instead suggest that sauropod lineages remained a major faunal component in both Laurasia (Europe, Asia) and Gondwana (South America, Africa, India, and Australia). Only the pre-Maastrichtian Senonian deposits of North America were lacking sauropodomorphs. Furthermore, the abelisaurid/titanosaurid fauna of Argentina is, in fact, probably more typical of Late Cretaceous dinosaurian communities. Rather, it is the coelurosaurian/ornithischian communities of Asiamerica (and particularly North America) that are composed primarily of dinosaurs of small geographic distribution. Thus, the Judithian, Edmontonian, and Lancian faunas, rather than being typical of the Late Cretaceous, most likely represent an isolated island-continent terrestrial vertebrate population, perhaps analogous to the extremely isolated vertebrate communities of Tertiary South America. Furthermore, the shift from high-browsing to low-browsing herbivore “dynasties” more likely represents a local event in Senonian North America and does not represent a global paleoecological transformation of Late Cretaceous dinosaur community structure.


Sign in / Sign up

Export Citation Format

Share Document