scholarly journals Evidence for post-nebula volatilisation in an exo-planetary body

2021 ◽  
Vol 554 ◽  
pp. 116694
Author(s):  
John H.D. Harrison ◽  
Oliver Shorttle ◽  
Amy Bonsor
Keyword(s):  
Science ◽  
2017 ◽  
Vol 356 (6339) ◽  
pp. 708-708
Author(s):  
Devon Burr
Keyword(s):  

2019 ◽  
Vol 64 (8) ◽  
pp. 762-776
Author(s):  
E. M. Galimov

This article discusses some features of geochemistry of the Earth and the Moon, which manifests the specificity of the mechanism of their formation by fragmentation of protoplanetary gas-dust condensation (Galimov & Krivtsov, 2012). The principal difference between this model and other hypotheses of the Earth-Moon system formation, including the megaimpact hypothesis, is that it assumes the existence of a long stage of the dispersed state of matter, starting with the formation of protoplanetary gas-dust condensation, its compression and fragmentation and ending with the final accretion to the formed high-temperature embryos of the Earth and the Moon. The presence of the dispersed state allows a certain way to interpret the observed properties of the Earth-Moon system. Partial evaporation of solid particles due to adiabatic heating of the compressing condensation leads to the loss of volatiles including FeO. Computer simulations show that the final accretion is mainly performed on a larger fragment (the Earth’s embryo) and only slightly increases the mass of the smaller fragment (the Moon embryo).This explains the relative depletion of the Moon in iron and volatile and the increased concentration of refractory components compared to the Earth. The reversible nature of evaporation into the dispersed space, in contrast to the kinetic regime, and the removal of volatiles in the hydrodynamic flow beyond the gas-dust condensation determines the loss of volatiles without the effect of isotopes fractionation. The reversible nature of volatile evaporation also provides, in contrast to the kinetic regime, the preservation of part of the high-volatile components, such as water, in the planetary body, including the Moon. It follows from the essence of the model that at least a significant part of the Earth’s core is formed not by segregation of iron in the silicate-metal melt, but by evaporation and reduction of FeO in a dispersed medium, followed by deposition of clusters of elemental iron to the center of mass. This mechanism of formation of the core explains the observed excess of siderophilic elements in the Earth’s mantle. It also provides a plausible explanation for the observed character of iron isotopes fractionation (in terms of δ57Fe‰) on Earth and on the Moon. It solves the problem of the formation of iron core from initially oxide (FeO) form. The dispersed state of the substance during the period of accretion suggests that the loss of volatiles occurred during the time of accretion. Using the fact that isotopic systems: U–Pb, Rb–Sr, 129J–129Xe, 244Pu–136Xe, contain volatile components, it is possible to estimate the chronology of events in the evolution of the protoplanetary state. As a result, agreed estimates of the time of fragmentation of the primary protoplanetary condensation and formation of the embryos of the Earth and the Moon are obtained: from 10 to 40 million years, and the time of completion of the earth’s accretion and its birth as a planetary body: 110 – 130 million years after the emergence of the solar system. The presented interpretation is consistent with the fact that solid minerals on the Moon have already appeared at least 60 million years after the birth of the solar system (Barboni et al., 2017), and the metal core in the Earth and in the Moon could not have formed before 50 million years from the start of the solar system, as follows from the analysis of the Hf-W system (Kleine et al., 2009). It is shown that the hypothesis of megaimpact does not satisfy many constraints and does not create a basis for the explanation of the geochemistry of the Earth and the Moon.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1064
Author(s):  
Erika Barth

The Community Aerosol and Radiation Model for Atmospheres (CARMA) has been updated to apply to atmospheres of the Solar System outside of Earth. CARMA, as its name suggests, is a coupled aerosol microphysics and radiative transfer model and includes the processes of nucleation, condensation, evaporation, coagulation, and vertical transport. Previous model versions have been applied separately to the atmospheres of Solar System bodies and extrasolar planets. The primary advantage to PlanetCARMA is that the core physics routines each reside in their own self-contained modules and can be turned on/off as desired while a separate planet module supplies all the necessary parameters to apply the model run to a particular planet (or planetary body). So a single codebase is used for all planetary studies. PlanetCARMA has also been updated to Fortran 90 modular format. Examples of outer solar system atmosphere applications are shown.


Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 130
Author(s):  
Louis N. Irwin ◽  
Dirk Schulze-Makuch

Most definitions of life assume that, at a minimum, life is a physical form of matter distinct from its environment at a lower state of entropy than its surroundings, using energy from the environment for internal maintenance and activity, and capable of autonomous reproduction. These assumptions cover all of life as we know it, though more exotic entities can be envisioned, including organic forms with novel biochemistries, dynamic inorganic matter, and self-replicating machines. The probability that any particular form of life will be found on another planetary body depends on the nature and history of that alien world. So the biospheres would likely be very different on a rocky planet with an ice-covered global ocean, a barren planet devoid of surface liquid, a frigid world with abundant liquid hydrocarbons, on a rogue planet independent of a host star, on a tidally locked planet, on super-Earths, or in long-lived clouds in dense atmospheres. While life at least in microbial form is probably pervasive if rare throughout the Universe, and technologically advanced life is likely much rarer, the chance that an alternative form of life, though not intelligent life, could exist and be detected within our Solar System is a distinct possibility.


Proceedings ◽  
2018 ◽  
Vol 2 (10) ◽  
pp. 566
Author(s):  
Yasmina Eid-Macheh y Sánchez ◽  
Juan José García Valverde
Keyword(s):  

Establishing a human colony on a planetary body different from the terrestrial one will entail combining those factors that can favour the good development of life in that place. However, which of these possible parameters are essential to the creation of a shelter for a long stay?


Author(s):  
Keiko Hamano

A magma ocean is a global layer of partially or fully molten rocks. Significant melting of terrestrial planets likely occurs due to heat release during planetary accretion, such as decay heat of short-lived radionuclides, impact energy released by continuous planetesimal accretion, and energetic impacts among planetary-sized bodies (giant impacts). Over a magma ocean, all water, which is released upon impact or degassed from the interior, exists as superheated vapor, forming a water-dominated, steam atmosphere. A magma ocean extending to the surface is expected to interact with the overlying steam atmosphere through material and heat exchange. Impact degassing of water starts when the size of a planetary body becomes larger than Earth’s moon or Mars. The degassed water could build up and form a steam atmosphere on protoplanets growing by planetesimal accretion. The atmosphere has a role in preventing accretion energy supplied by planetesimals from escaping, leading to the formation of a magma ocean. Once a magma ocean forms, part of the steam atmosphere would start to dissolve into the surface magma due to the high solubility of water into silicate melt. Theoretical studies indicated that as long as the magma ocean is present, a negative feedback loop can operate to regulate the amount of the steam atmosphere and to stabilize the surface temperature so that a radiative energy balance is achieved. Protoplanets can also accrete the surrounding H2-rich disk gas. Water could be produced by oxidation of H2 by ferrous iron in the magma. The atmosphere and water on protoplanets could be a mixture of outgassed and disk-gas components. Planets formed by giant impact would experience a global melting on a short timescale. A steam atmosphere could grow by later outgassing from the interior. Its thermal blanketing and greenhouse effects are of great importance in controlling the cooling rate of the magma ocean. Due to the presence of a runaway greenhouse threshold, the crystallization timescale and water budget of terrestrial planets can depend on the orbital distance from the host star. The terrestrial planets in our solar system essentially have no direct record of their earliest history, whereas observations of young terrestrial exoplanets may provide us some insight into what early terrestrial planets and their atmosphere are like. Evolution of protoplanets in the framework of pebble accretion remains unexplored.


2020 ◽  
Vol 6 (30) ◽  
pp. eaba1303
Author(s):  
Clara Maurel ◽  
James F. J. Bryson ◽  
Richard J. Lyons ◽  
Matthew R. Ball ◽  
Rajesh V. Chopdekar ◽  
...  

Modern meteorite classification schemes assume that no single planetary body could be source of both unmelted (chondritic) and melted (achondritic) meteorites. This dichotomy is a natural outcome of formation models assuming that planetesimal accretion occurred nearly instantaneously. However, it has recently been proposed that the accretion of many planetesimals lasted over ≳1 million years (Ma). This could have resulted in partially differentiated internal structures, with individual bodies containing iron cores, achondritic silicate mantles, and chondritic crusts. This proposal can be tested by searching for a meteorite group containing evidence for these three layers. We combine synchrotron paleomagnetic analyses with thermal, impact, and collisional evolution models to show that the parent body of the enigmatic IIE iron meteorites was such a partially differentiated planetesimal. This implies that some chondrites and achondrites simultaneously coexisted on the same planetesimal, indicating that accretion was protracted and that apparently undifferentiated asteroids may contain melted interiors.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Farhang Nabiei ◽  
James Badro ◽  
Teresa Dennenwaldt ◽  
Emad Oveisi ◽  
Marco Cantoni ◽  
...  

2015 ◽  
Vol 56 (8) ◽  
pp. 1714-1725
Author(s):  
Ioannis Haranas ◽  
Ioannis Gkigkitzis ◽  
Ilias Kotsireas ◽  
Maria K. Haranas ◽  
Ioannis Rekkas

Sign in / Sign up

Export Citation Format

Share Document