Decreased soil carbon in a warming world: Degraded pyrogenic carbon during the Paleocene-Eocene Thermal Maximum, Bighorn Basin, Wyoming

2021 ◽  
Vol 566 ◽  
pp. 116970
Author(s):  
Elizabeth H. Denis ◽  
Bianca J. Maibauer ◽  
Gabriel J. Bowen ◽  
Phillip E. Jardine ◽  
Guy J. Harrington ◽  
...  
2015 ◽  
Vol 35 (2) ◽  
pp. e905481 ◽  
Author(s):  
Jason R. Bourque ◽  
J. Howard Hutchison ◽  
Patricia A. Holroyd ◽  
Jonathan I. Bloch

2016 ◽  
Vol 12 (5) ◽  
pp. 1151-1163 ◽  
Author(s):  
Hemmo A. Abels ◽  
Vittoria Lauretano ◽  
Anna E. van Yperen ◽  
Tarek Hopman ◽  
James C. Zachos ◽  
...  

Abstract. Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically light carbon to the exogenic atmosphere–ocean carbon system, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can be used to constrain both the sources and amounts of carbon released during an event and also to correlate marine and terrestrial records with high precision. The Paleocene–Eocene Thermal Maximum (PETM) is well documented, but CIE records for the subsequent warming events are still rare, especially from the terrestrial realm.Here, we provide new paleosol carbonate CIE records for two of the smaller hyperthermal events, I1 and I2, as well as two additional records of Eocene Thermal Maximum 2 (ETM2) and H2 in the Bighorn Basin, Wyoming, USA. Stratigraphic comparison of this expanded, high-resolution terrestrial carbon isotope history to the deep-sea benthic foraminiferal isotope records from Ocean Drilling Program (ODP) sites 1262 and 1263, Walvis Ridge, in the southern Atlantic Ocean corroborates the idea that the Bighorn Basin fluvial sediments record global atmospheric change. The  ∼  34 m thicknesses of the eccentricity-driven hyperthermals in these archives corroborate precession forcing of the  ∼  7 m thick fluvial overbank–avulsion sedimentary cycles. Using bulk-oxide mean-annual-precipitation reconstructions, we find soil moisture contents during the four younger hyperthermals that are similar to or only slightly wetter than the background, in contrast with soil drying observed during the PETM using the same proxy, sediments, and plant fossils.The magnitude of the CIEs in soil carbonate for the four smaller, post-PETM events scale nearly linearly with the equivalent event magnitudes documented in marine records. In contrast, the magnitude of the PETM terrestrial CIE is at least 5 ‰ smaller than expected based on extrapolation of the scaling relationship established from the smaller events. We evaluate the potential for recently documented, nonlinear effects of pCO2 on plant photosynthetic C-isotope fractionation to explain this scaling discrepancy. We find that the PETM anomaly can be explained only if background pCO2 was at least 50 % lower during most of the post-PETM events than prior to the PETM. Although not inconsistent with other pCO2 proxy data for the time interval, this would require declining pCO2 across an interval of global warming. A more likely explanation of the PETM CIE anomaly in pedogenic carbonate is that other environmental or biogeochemical factors influencing the terrestrial CIE magnitudes were not similar in nature or proportional to event size across all of the hyperthermals. We suggest that contrasting regional hydroclimatic change between the PETM and subsequent events, in line with our soil proxy records, may have modulated the expression of the global CIEs in the Bighorn Basin soil carbonate records.


2015 ◽  
Vol 11 (2) ◽  
pp. 1371-1405
Author(s):  
A. E. Chew

Abstract. Scientists are increasingly turning to deep-time fossil records to decipher the long-term consequences of climate change in the race to preserve modern biotas from anthropogenically driven global warming. "Hyperthermals" are past intervals of geologically rapid global warming that provide the opportunity to study the effects of climate change on existing faunas over thousands of years. A series hyperthermals is known from the early Eocene (∼56–54 million years ago), including the Paleocene-Eocene Thermal Maximum (PETM) and two subsequent hyperthermals, Eocene Thermal Maximum 2 (ETM2) and H2. The later hyperthermals occurred following the onset of warming at the Early Eocene Climatic Optimum (EECO), the hottest sustained period of the Cenozoic. The PETM has been comprehensively studied in marine and terrestrial settings, but the terrestrial biotic effects of ETM2 and H2 are unknown. Their geochemical signatures have been located in the northern part of the Bighorn Basin, WY, USA, and their levels can be extrapolated to an extraordinarily dense, well-studied terrestrial mammal fossil record in the south-central part of the basin. High-resolution, multi-parameter paleoecological analysis reveals significant peaks in species diversity and turnover and changes in abundance and relative body size at the levels of ETM2 and H2 in the south-central Bighorn Basin record. In contrast with the PETM, faunal change at the later hyperthermals is less extreme, does not include immigration and involves a proliferation of body sizes, although abundance shifts tend to favor smaller congeners. Faunal response at ETM2 and H2 is distinctive in its high proportion of species losses potentially related to heightened species vulnerability in response to the changes already underway at the beginning of the EECO. Faunal response at ETM2 and H2 is also distinctive in high proportions of beta richness, suggestive of increased geographic dispersal related to transient increases in habitat (floral) complexity and/or precipitation or seasonality of precipitation. These results suggest that rapid ecological changes, increased heterogeneity in species incidence, and heightened species vulnerability and loss may be expected across most of North America in the near future in response to anthropogenically-driven climate change.


2021 ◽  
Author(s):  
Andrew Thomas ◽  
Stephen Tooth ◽  
S. Lan ◽  
Thomas Holt ◽  
Ian Saunders ◽  
...  

Abstract Numerous permanent and temporary wetlands occur throughout the world’s drylands. Although characterised by diverse hydroperiods, these wetlands in drylands are typically hotspots of biological activity and productivity. The healthy functioning and possibly even existence of many wetlands in drylands, however, is threatened by desiccation resulting from a combination of climate change and human disturbance. Near Alcañiz in arid northeast Spain, three adjacent saladas (playas) with contrasting hydroperiods provide an opportunity to investigate how moisture availability affects their soil carbon (C) stocks, CO2 efflux, and microbial communities. Frequent inundation and/or near-permanent soil saturation supports the generation of organic C from a range of different sources. Soil inorganic C was greatest on the driest salada (3.8 %) compared to the wetter saladas (3.0 % and 2.1 %) owing to evaporative concentration and the reaction of CO2 with available Ca2+, Mg2+ and Na+ ions. CO2 efflux was greatest at intermediate moisture levels (142 mg CO2 m-2 hr-1), but the spatial and temporal variability in CO2 efflux on salada surfaces is very high, demonstrating the need for intensive sampling regimes to provide realistic estimates of their contribution to atmospheric CO2 exchanges. Different microbial community structures also characterise each salada. The saladas near Alcañiz, and many other similar features in northeast Spain, are renowned for their rare and threatened flora and fauna, yet their soil C cycle characteristics and soil microbial communities provide additional reasons to monitor the impacts of climate change and protect these vulnerable environments from further anthropogenic disturbances.


2020 ◽  
Author(s):  
Emily N. Randall ◽  
◽  
Michael D. D'Emic ◽  
Brady Z. Foreman ◽  
Simone Hoffmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document