Changes in Body Size and Dental Development in Mammals During the Paleocene-Eocene Thermal Maximum of the Bighorn Basin, WY

2014 ◽  
Vol 13 ◽  
pp. 180-181
Author(s):  
Paul E. Morse ◽  
Aaron R. Wood ◽  
Jonathan I. Bloch
2015 ◽  
Vol 35 (2) ◽  
pp. e905481 ◽  
Author(s):  
Jason R. Bourque ◽  
J. Howard Hutchison ◽  
Patricia A. Holroyd ◽  
Jonathan I. Bloch

2016 ◽  
Vol 12 (5) ◽  
pp. 1151-1163 ◽  
Author(s):  
Hemmo A. Abels ◽  
Vittoria Lauretano ◽  
Anna E. van Yperen ◽  
Tarek Hopman ◽  
James C. Zachos ◽  
...  

Abstract. Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically light carbon to the exogenic atmosphere–ocean carbon system, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can be used to constrain both the sources and amounts of carbon released during an event and also to correlate marine and terrestrial records with high precision. The Paleocene–Eocene Thermal Maximum (PETM) is well documented, but CIE records for the subsequent warming events are still rare, especially from the terrestrial realm.Here, we provide new paleosol carbonate CIE records for two of the smaller hyperthermal events, I1 and I2, as well as two additional records of Eocene Thermal Maximum 2 (ETM2) and H2 in the Bighorn Basin, Wyoming, USA. Stratigraphic comparison of this expanded, high-resolution terrestrial carbon isotope history to the deep-sea benthic foraminiferal isotope records from Ocean Drilling Program (ODP) sites 1262 and 1263, Walvis Ridge, in the southern Atlantic Ocean corroborates the idea that the Bighorn Basin fluvial sediments record global atmospheric change. The  ∼  34 m thicknesses of the eccentricity-driven hyperthermals in these archives corroborate precession forcing of the  ∼  7 m thick fluvial overbank–avulsion sedimentary cycles. Using bulk-oxide mean-annual-precipitation reconstructions, we find soil moisture contents during the four younger hyperthermals that are similar to or only slightly wetter than the background, in contrast with soil drying observed during the PETM using the same proxy, sediments, and plant fossils.The magnitude of the CIEs in soil carbonate for the four smaller, post-PETM events scale nearly linearly with the equivalent event magnitudes documented in marine records. In contrast, the magnitude of the PETM terrestrial CIE is at least 5 ‰ smaller than expected based on extrapolation of the scaling relationship established from the smaller events. We evaluate the potential for recently documented, nonlinear effects of pCO2 on plant photosynthetic C-isotope fractionation to explain this scaling discrepancy. We find that the PETM anomaly can be explained only if background pCO2 was at least 50 % lower during most of the post-PETM events than prior to the PETM. Although not inconsistent with other pCO2 proxy data for the time interval, this would require declining pCO2 across an interval of global warming. A more likely explanation of the PETM CIE anomaly in pedogenic carbonate is that other environmental or biogeochemical factors influencing the terrestrial CIE magnitudes were not similar in nature or proportional to event size across all of the hyperthermals. We suggest that contrasting regional hydroclimatic change between the PETM and subsequent events, in line with our soil proxy records, may have modulated the expression of the global CIEs in the Bighorn Basin soil carbonate records.


2015 ◽  
Vol 282 (1812) ◽  
pp. 20151097 ◽  
Author(s):  
Brian D. Rankin ◽  
Jeremy W. Fox ◽  
Christian R. Barrón-Ortiz ◽  
Amy E. Chew ◽  
Patricia A. Holroyd ◽  
...  

Species selection, covariation of species’ traits with their net diversification rates, is an important component of macroevolution. Most studies have relied on indirect evidence for its operation and have not quantified its strength relative to other macroevolutionary forces. We use an extension of the Price equation to quantify the mechanisms of body size macroevolution in mammals from the latest Palaeocene and earliest Eocene of the Bighorn and Clarks Fork Basins of Wyoming. Dwarfing of mammalian taxa across the Palaeocene/Eocene Thermal Maximum (PETM), an intense, brief warming event that occurred at approximately 56 Ma, has been suggested to reflect anagenetic change and the immigration of small bodied-mammals, but might also be attributable to species selection. Using previously reconstructed ancestor–descendant relationships, we partitioned change in mean mammalian body size into three distinct mechanisms: species selection operating on resident mammals, anagenetic change within resident mammalian lineages and change due to immigrants. The remarkable decrease in mean body size across the warming event occurred through anagenetic change and immigration. Species selection also was strong across the PETM but, intriguingly, favoured larger-bodied species, implying some unknown mechanism(s) by which warming events affect macroevolution.


2017 ◽  
Author(s):  
Jason R Rohr ◽  
David J. Civitello ◽  
Jeremy M. Cohen ◽  
Elizabeth A. Roznik ◽  
Barry Sinervo ◽  
...  

Thermal breadth, the range of body temperatures over which organisms perform well, and thermal acclimation, the ability to alter optimal performance temperature and critical thermal maximum or minimum with changing temperatures, reflect the capacity of organisms to respond to temperature variability and are thus crucial traits for coping with climate change. Although there are theoretical frameworks for predicting thermal breadths and acclimation, the predictions of these models have not been tested across taxa, latitudes, body sizes, traits, habitats, and methodological factors. Here, we address this knowledge gap using simulation modeling and empirical analyses of >2,000 acclimation strengths from >500 species using four datasets of ectotherms. After accounting for important statistical interactions, covariates, and experimental artifacts, we reveal that i) acclimation rate scales positively with body size contributing to a negative association between body size and thermal breadth across species and ii) acclimation capacity increases with body size, seasonality, and latitude (to mid-latitudinal regions) and is regularly underestimated for most organisms. Contrary to suggestions that plasticity theory and empirical work on thermal acclimation are incongruent, these findings are consistent with theory on phenotypic plasticity. We further validated our framework by demonstrating that it could predict global extinction risk to amphibian biodiversity from climate change.


2015 ◽  
Vol 11 (2) ◽  
pp. 1371-1405
Author(s):  
A. E. Chew

Abstract. Scientists are increasingly turning to deep-time fossil records to decipher the long-term consequences of climate change in the race to preserve modern biotas from anthropogenically driven global warming. "Hyperthermals" are past intervals of geologically rapid global warming that provide the opportunity to study the effects of climate change on existing faunas over thousands of years. A series hyperthermals is known from the early Eocene (∼56–54 million years ago), including the Paleocene-Eocene Thermal Maximum (PETM) and two subsequent hyperthermals, Eocene Thermal Maximum 2 (ETM2) and H2. The later hyperthermals occurred following the onset of warming at the Early Eocene Climatic Optimum (EECO), the hottest sustained period of the Cenozoic. The PETM has been comprehensively studied in marine and terrestrial settings, but the terrestrial biotic effects of ETM2 and H2 are unknown. Their geochemical signatures have been located in the northern part of the Bighorn Basin, WY, USA, and their levels can be extrapolated to an extraordinarily dense, well-studied terrestrial mammal fossil record in the south-central part of the basin. High-resolution, multi-parameter paleoecological analysis reveals significant peaks in species diversity and turnover and changes in abundance and relative body size at the levels of ETM2 and H2 in the south-central Bighorn Basin record. In contrast with the PETM, faunal change at the later hyperthermals is less extreme, does not include immigration and involves a proliferation of body sizes, although abundance shifts tend to favor smaller congeners. Faunal response at ETM2 and H2 is distinctive in its high proportion of species losses potentially related to heightened species vulnerability in response to the changes already underway at the beginning of the EECO. Faunal response at ETM2 and H2 is also distinctive in high proportions of beta richness, suggestive of increased geographic dispersal related to transient increases in habitat (floral) complexity and/or precipitation or seasonality of precipitation. These results suggest that rapid ecological changes, increased heterogeneity in species incidence, and heightened species vulnerability and loss may be expected across most of North America in the near future in response to anthropogenically-driven climate change.


2020 ◽  
Author(s):  
Emily N. Randall ◽  
◽  
Michael D. D'Emic ◽  
Brady Z. Foreman ◽  
Simone Hoffmann ◽  
...  

2013 ◽  
Vol 14 (10) ◽  
pp. 4133-4152 ◽  
Author(s):  
Allison A. Baczynski ◽  
Francesca A. McInerney ◽  
Scott L. Wing ◽  
Mary J. Kraus ◽  
Jonathan I. Bloch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document