A method for real-time wireless monitoring of the efficiency and conditions of three-phase induction motor operation

2018 ◽  
Vol 157 ◽  
pp. 70-82 ◽  
Author(s):  
Daniel P. de Carvalho ◽  
Fernando B. Silva ◽  
Wagner E. Vanço ◽  
Felipe A. da Silva Gonçalves ◽  
Carlos A. Bissochi ◽  
...  
2018 ◽  
Vol 58 ◽  
pp. 03016 ◽  
Author(s):  
I.V Naumov ◽  
N.V. Savina ◽  
M.V. Shevchenko

One of the main operation modes that characterizes power quality in distribution networks is asymmetry of three-phase voltage system. Operation of an induction motor (IM) with disturbed voltage symmetry in the supply network can not be considered as a rated one. The system of voltages applied to the stator winding of IM under these conditions contains positive- and negative-sequence components. This worsens the performance characteristics of IM essentially. In order to balance the 0.38 kV network operation and enhance the efficiency of the three-phase electric motor operation it is suggested to use a special balancing unit (BU) that minimizes the negative-sequence components of current and voltage. The operation modes of the obtained system “supply source – induction motor – balancing unit” are simulated within the MATLAB software package of applied programs, which allows one to assess the impact of low quality of power on the operating characteristics of the electric motor and the efficiency of the balancing unit to increase the “durability” of the motor under the asymmetrical power consumption.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ali Hmidet ◽  
Olfa Boubaker

In this paper, a new design of a real-time low-cost speed monitoring and closed-loop control of the three-phase induction motor (IM) is proposed. The proposed solution is based on a voltage/frequency (V/F) control approach and a PI antiwindup regulator. It uses the Waijung Blockset which considerably alleviates the heaviness and the difficulty of the microcontroller’s programming task incessantly crucial for the implementation and the management of such complex applications. Indeed, it automatically generates C codes for many types of microcontrollers like the STM32F4 family, also used in this application. Furthermore, it offers a cost-effective design reducing the system components and increasing its efficiency. To prove the efficiency of the suggested design, not only simulation results are carried out for a wide range of variations in load and reference speed but also experimental assessment. The real-time closed-loop control performances are proved using the aMG SQLite Data Server via the UART port board, whereas Waijung WebPage Designer (W2D) is used for the web monitoring task. Experimental results prove the accuracy and robustness of the proposed solution.


This paper adopted a thermal network method (TNM) based on Motor-CAD with MATLAB/Simulink software, and finite element method (FEM) based on Motor- CAD with Flux2D software, to estimate the stator winding temperature of a totally enclosed fan-cooled (TEFC), squirrel cage, three-phase induction motor. The three software packages were adopted successfully with a good agreement among their results resulting in preferring using Motor-CAD in obtaining results, and using Flux2D with MATLAB to validate these results. The success of triple-software methodology will give the induction motor designer a well-validated tool in attaining a safe motor operation without exceeding the maximum allowable stator winding temperature rise, and without using an experimental test based on an expensive manufacturing motor.


2015 ◽  
Vol 12 (1) ◽  
pp. 17-32 ◽  
Author(s):  
Dejan Reljic ◽  
Josif Tomic ◽  
Zeljko Kanovic

In this paper, a suitable method for the on-line detection of the airgap mixed eccentricity fault in a three-phase cage induction motor has been proposed. The method is based on a Motor Current Signature Analysis (MCSA) approach, a technique that is often used for an induction motor condition monitoring and fault diagnosis. It is based on the spectral analysis of the stator line current signal and the frequency identification of specific components, which are created as a result of motor faults. The most commonly used method for the current signal spectral analysis is based on the Fast Fourier transform (FFT). However, due to the complexity and memory demands, the FFT algorithm is not always suitable for real-time systems. Instead of the whole spectrum analysis, this paper suggests only the spectral analysis on the expected airgap fault frequencies employing the Goertzel?s algorithm to predict the magnitude of these frequency components. The method is simple and can be implemented in real-time airgap mixed eccentricity monitoring systems without much computational effort. A low-cost data acquisition system, supported by the LabView software, has been used for the hardware and software implementation of the proposed method. The method has been validated by the laboratory experiments on both the line-connected and the inverter-fed three-phase fourpole cage induction motor operated at the rated frequency and under constant load at a few different values. In addition, the results of the proposed method have been verified through the motor?s vibration signal analysis.


Sign in / Sign up

Export Citation Format

Share Document