Optimal coordination of overcurrent relays with constraining communication links using DE–GA algorithm

Author(s):  
Mohammad Bakhshipour ◽  
Farhad Namdari ◽  
Sajad Samadinasab
Author(s):  
Ali Abbasi ◽  
Hossein Kazemi Karegar ◽  
Tohid Soleymani Aghdam

Due to advances in smart grid, different communication links as delay, inter-trip and activation are used between relays to enhance the protection system performance. In this paper, the effect of inter-trip links on optimal coordination of directional overcurrent relays (DOCRs) is analytically investigated and modelled. Moreover, an index is proposed to find the optimum locations for inter-trip link installation to reach the minimal fault clearance times under the selectivity constraint. Then a method is proposed to determine the candidate locations of inter-trip links and the associated reduced operating times. An Exhaustive search approach is also used to validate the efficiency of the proposed method. The method is simulated and tested on distribution network of IEEE 33 bus using the Power Factory software and MATLAB optimization toolbox. Genetic algorithm is used as an optimization tool to find optimal settings of relays. The results indicate the capability of proposed method in optimal protection coordination with optimum inter-trips.


2015 ◽  
Vol 16 (3) ◽  
pp. 439
Author(s):  
Sajad Samadinasab ◽  
Farhad Namdari ◽  
Nader Shojaei

Usually coordination of overcurrent relays is done by taking into account the specific structure of the system which does not show the real state of the system. On the other hand, dynamic changes in network can occur due to short circuit conditions, the malfunctioning relays, development, operation and repairs on any part of the power system. Also the most of the new protective schemes are based on a communication channel, which cannot be guaranteed in practice. Therefore, solving the problem of relay coordination is extremely difficult in case of dynamic changes in the network structure and the absence of communication links between some relays. In this article, a novel protective logic based on phasor measurement units (PMUs) data is proposed for optimal coordination of overcurrent relays. In this method, by using the PMU measurements, phasor information can be obtained continuously at any node where PMUs are installed in the power grid. For this purpose, in the first the Optimal PMU placement is determined for full network observability. Then, the dynamic changes of network will be observe by using wide area measurements based on PMUs data. Finally this information is sent via communication links PMUs for the optimal coordination of overcurrent relays. The use of PMU for the coordination of overcurrent relays improve the decision making capability and performance of protective relays and help them to form a reliable and robust protection system. The proposed method is tested on IEEE 8-bus and 14-bus standard networks.


2012 ◽  
Vol 516-517 ◽  
pp. 1316-1321
Author(s):  
Ming Ta Yang ◽  
Jin Lung Guan ◽  
Jhy Cherng Gu

Wind generator and distribution systems after interconnection would change the short circuit fault characteristics of the original system and may lead to protection relay malfunctions, and review of the protection coordination. It is necessary to research the impact of existing protection strategies for distribution systems after wind generator interconnection. Linear programming methods were adopted for this study to review the coordination problems among feeder circuit breaker, lateral circuit breaker, and power fuse after radial distribution systems and wind generator interconnections.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2297 ◽  
Author(s):  
Wadood ◽  
Khurshaid ◽  
Farkoush ◽  
Yu ◽  
Kim ◽  
...  

In power systems protection, the optimal coordination of directional overcurrent relays (DOCRs) is of paramount importance. The coordination of DOCRs in a multi-loop power system is formulated as an optimization problem. The main objective of this paper is to develop the whale optimization algorithm (WOA) for the optimal coordination of DOCRs and minimize the sum of the operating times of all primary relays. The WOA is inspired by the bubble-net hunting strategy of humpback whales which leads toward global minima. The proposed algorithm has been applied to six IEEE test systems including the IEEE three-bus, eight-bus, nine-bus, 14-bus, 15-bus, and 30-bus test systems. Furthermore, the results obtained using the proposed WOA are compared with those obtained by other up-to-date algorithms. The obtained results show the effectiveness of the proposed WOA to minimize the relay operating time for the optimal coordination of DOCRs.


Sign in / Sign up

Export Citation Format

Share Document