Multi-node data exchange traffic analysis for a communication framework embedded on smart meters

2022 ◽  
Vol 205 ◽  
pp. 107734
Author(s):  
Rodrigo T. Caropreso ◽  
Ricardo A.S. Fernandes ◽  
Ivan N. Silva
Author(s):  
R. T. Caropreso ◽  
F. A. S. Borges ◽  
I. N. Silva ◽  
R. A. S. Fernandes ◽  
D. P. M. Osorio

2019 ◽  
Vol 66 (2) ◽  
pp. 1638-1647 ◽  
Author(s):  
Rodrigo de T. Caropreso ◽  
Ricardo A. S. Fernandes ◽  
Diana P. M. Osorio ◽  
Ivan N. Silva

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1555 ◽  
Author(s):  
Vangelis Marinakis

European buildings are producing a massive amount of data from a wide spectrum of energy-related sources, such as smart meters’ data, sensors and other Internet of things devices, creating new research challenges. In this context, the aim of this paper is to present a high-level data-driven architecture for buildings data exchange, management and real-time processing. This multi-disciplinary big data environment enables the integration of cross-domain data, combined with emerging artificial intelligence algorithms and distributed ledgers technology. Semantically enhanced, interlinked and multilingual repositories of heterogeneous types of data are coupled with a set of visualization, querying and exploration tools, suitable application programming interfaces (APIs) for data exchange, as well as a suite of configurable and ready-to-use analytical components that implement a series of advanced machine learning and deep learning algorithms. The results from the pilot application of the proposed framework are presented and discussed. The data-driven architecture enables reliable and effective policymaking, as well as supports the creation and exploitation of innovative energy efficiency services through the utilization of a wide variety of data, for the effective operation of buildings.


2020 ◽  
Vol 51 (2) ◽  
pp. 479-493
Author(s):  
Jenny A. Roberts ◽  
Evelyn P. Altenberg ◽  
Madison Hunter

Purpose The results of automatic machine scoring of the Index of Productive Syntax from the Computerized Language ANalysis (CLAN) tools of the Child Language Data Exchange System of TalkBank (MacWhinney, 2000) were compared to manual scoring to determine the accuracy of the machine-scored method. Method Twenty transcripts of 10 children from archival data of the Weismer Corpus from the Child Language Data Exchange System at 30 and 42 months were examined. Measures of absolute point difference and point-to-point accuracy were compared, as well as points erroneously given and missed. Two new measures for evaluating automatic scoring of the Index of Productive Syntax were introduced: Machine Item Accuracy (MIA) and Cascade Failure Rate— these measures further analyze points erroneously given and missed. Differences in total scores, subscale scores, and individual structures were also reported. Results Mean absolute point difference between machine and hand scoring was 3.65, point-to-point agreement was 72.6%, and MIA was 74.9%. There were large differences in subscales, with Noun Phrase and Verb Phrase subscales generally providing greater accuracy and agreement than Question/Negation and Sentence Structures subscales. There were significantly more erroneous than missed items in machine scoring, attributed to problems of mistagging of elements, imprecise search patterns, and other errors. Cascade failure resulted in an average of 4.65 points lost per transcript. Conclusions The CLAN program showed relatively inaccurate outcomes in comparison to manual scoring on both traditional and new measures of accuracy. Recommendations for improvement of the program include accounting for second exemplar violations and applying cascaded credit, among other suggestions. It was proposed that research on machine-scored syntax routinely report accuracy measures detailing erroneous and missed scores, including MIA, so that researchers and clinicians are aware of the limitations of a machine-scoring program. Supplemental Material https://doi.org/10.23641/asha.11984364


Author(s):  
Scot D. Weaver ◽  
Thomas E. Lefchik ◽  
Marc I. Hoit ◽  
Kirk Beach

Author(s):  
Uppuluri Sirisha ◽  
G. Lakshme Eswari

This paper briefly introduces Internet of Things(IOT) as a intellectual connectivity among the physical objects or devices which are gaining massive increase in the fields like efficiency, quality of life and business growth. IOT is a global network which is interconnecting around 46 million smart meters in U.S. alone with 1.1 billion data points per day[1]. The total installation base of IOT connecting devices would increase to 75.44 billion globally by 2025 with a increase in growth in business, productivity, government efficiency, lifestyle, etc., This paper familiarizes the serious concern such as effective security and privacy to ensure exact and accurate confidentiality, integrity, authentication access control among the devices.


Sign in / Sign up

Export Citation Format

Share Document