Pressure drop in large volumetric heat storage tank radial plate diffuser

2020 ◽  
Vol 29 ◽  
pp. 101350 ◽  
Author(s):  
Lino Kocijel ◽  
Vedran Mrzljak ◽  
Vladimir Glažar
2018 ◽  
Vol 87 ◽  
pp. 69-79 ◽  
Author(s):  
Sol-Ji Song ◽  
Sangwon Cho ◽  
Woo-Cheol Kim ◽  
Jung-Gu Kim

2012 ◽  
Vol 3 (1) ◽  
pp. 75-79
Author(s):  
L. Böszörményi ◽  
E. Šiváková

Abstract The seasonal heat storage tank is the most important component of the SDH system, which allows significant increase in the share of solar energy in heat supply in comparison with conventional solar systems with short-term accumulation of heat. The adverse impact of their investment sophistication on competitiveness may be compensated by the increased use. For example: Administrative cooperation with heat pump allows increasing the accumulation capacity of the seasonal heat storage tank. Such cooperetion causes the direct use of heating energy and the accumulation of cooling energy produced by heat punp in the final stage of the heating period. It can be used to remote cooling supplied buildings. Experimentation on mathematical models is possible to obtain valuable insights about the dynamics of the processes of charging and discharging in the seasonal storage tank and subsequently used in the design, implementation and operation.


2013 ◽  
Vol 116 (1135) ◽  
pp. 392-393
Author(s):  
Hideki TAKEBAYASHI ◽  
Naomichi YANO

Author(s):  
Ben Xu ◽  
Peiwen Li ◽  
Cholik Chan

With a large capacity thermal storage system using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency of solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF). While the dual-media sensible heat storage system has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study; particularly, the sizing of volumes of storage tanks considering actual operation conditions is of significance. In this paper, a strategy for LHSS volume sizing is proposed, which is based on computations using an enthalpy-based 1D model. One example of 60MW solar thermal power plant with 35% thermal efficiency is presented. In the study, potassium hydroxide (KOH) is adopted as PCM and Therminol VP-1 is used as HTF. The operational temperatures of the storage system are 390°C and 310°C, respectively for the high and low temperatures. The system is assumed to operate for 100 days with 6 hours charge and 6 hours discharge every day. From the study, the needed height of the thermal storage tank is calculated from using the strategy of tank sizing. The method for tank volume sizing is of significance to engineering application.


2019 ◽  
Vol 108 ◽  
pp. 02013
Author(s):  
Piotr Babiński ◽  
Michalina Kotyczka – Morańska ◽  
Jarosław Zuwała

The paper presents the results of the fundamental research devoted to the application of MgSO4 as a heat carrier for thermochemical seasonal storage system devoted for household application followed by the results of 35kWh storage tank (TRL IV) charging and discharging tests. Seasonal thermochemical heat storage, based on the reversible reactions of hydratation and dehydratation of a solid medium gives an opportunity to accumulate the energy with a storage capacity exceeding 300-400 kWh/m3.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Ben Xu ◽  
Peiwen Li ◽  
Cho Lik Chan

A concentrated solar power (CSP) plant typically has thermal energy storage (TES), which offers advantages of extended operation and power dispatch. Using dual-media, TES can be cost-effective because of the reduced use of heat transfer fluid (HTF), usually an expensive material. The focus of this paper is on the effect of a start-up period thermal storage strategy to the cumulative electrical energy output of a CSP plant. Two strategies—starting with a cold storage tank (referred to as “cold start”) and starting with a fully charged storage tank (referred to as “hot start”)—were investigated with regards to their effects on electrical energy production in the same period of operation. An enthalpy-based 1D transient model for energy storage and temperature variation in solid filler material and HTF was applied for both the sensible heat storage system (SHSS) and the latent heat storage system (LHSS). The analysis was conducted for a CSP plant with an electrical power output of 60 MWe. It was found that the cold start is beneficial for both the SHSS and LHSS systems due to the overall larger electrical energy output over the same number of days compared to that of the hot start. The results are expected to be helpful for planning the start-up operation of a CSP plant with a dual-media thermal storage system.


2016 ◽  
Vol 13 (8) ◽  
pp. 822-830 ◽  
Author(s):  
Emanuele Bonamente ◽  
Elisa Moretti ◽  
Cinzia Buratti ◽  
Franco Cotana

2019 ◽  
Vol 162 ◽  
pp. 114151 ◽  
Author(s):  
Zilong Wang ◽  
Hua Zhang ◽  
Binlin Dou ◽  
Guanhua Zhang ◽  
Weidong Wu

Sign in / Sign up

Export Citation Format

Share Document