Experimental and numerical investigations on the effects of different tilt angles on the phase change material melting process in a rectangular container

2020 ◽  
Vol 32 ◽  
pp. 101914
Author(s):  
Abdulmunem R. Abdulmunem ◽  
Pakharuddin Mohd Samin ◽  
Hasimah Abdul Rahman ◽  
Hashim A. Hussien ◽  
Izhari Izmi Mazali ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 721
Author(s):  
Dariusz Heim ◽  
Michał Krempski-Smejda ◽  
Pablo Roberto Dellicompagni ◽  
Dominika Knera ◽  
Anna Wieprzkowicz ◽  
...  

Detailed analyses of melting processes in phase change material (PCM) glazing units, changes of direct transmittance as well as investigation of refraction index were provided based on laboratory measurements. The main goal of the study was to determine the direct light transmittance versus time under constant solar radiation intensity and stable temperature of the surrounding air. The experiment was conducted on a triple glazed unit with one cavity filled with a paraffin RT21HC as a PCM. The unit was installed in a special holder and exposed to the radiation from an artificial sun. The vertical illuminance was measured by luxmeters and compared with a reference case to determine the direct light transmittance. The transmittance was determined for the whole period of measurements when some specific artefacts were identified and theoretically explained based on values of refractive indexes for paraffins in the solid and liquid state, and for a glass. The melting process of a PCM in a glass unit was identified as a complex one, with interreflections and refraction of light on semi layers characterized by a different physical states (solid, liquid or mushy). These optical phenomena caused nonuniformity in light transmittance, especially when the PCM is in a mushy state. It was revealed that light transmittance versus temperature cannot be treated as a linear function.


2018 ◽  
Vol 83 (1) ◽  
pp. 10902 ◽  
Author(s):  
Müslüm Arıcı ◽  
Ensar Tütüncü ◽  
Hasan Karabay ◽  
Antonio Campo

In this study, melting of a phase change material (PCM) in a square cavity with a single fin attached at the center of the heated wall is studied numerically employing the enthalpy-porosity method. The opposite wall to the heated wall in the square cavity is cold. The other two adjacent walls are thermally insulated. Paraffin wax is chosen as a PCM due to its demonstrable favorable properties. The thermophysical properties of the paraffin wax are assumed to be a dual function of temperature and phase. The influence of the fin length on the melting process of the paraffin wax is examined. Moreover, the orientation of the square cavity on the melting process is scrutinized. The numerical results elucidate that the melting rates increase significantly by embedding the fin into the paraffin wax. As the fin length is incremented, the melting rate intensifies considerably during the early stages of melting. However, the effect of the fin length on the melting rate diminishes after a long period of heating has happened. It is also observed that the melting rate can be augmented significantly by changing the orientation of the heated wall in the square cavity.


Energy ◽  
2019 ◽  
Vol 172 ◽  
pp. 1187-1197 ◽  
Author(s):  
Haoshu Ling ◽  
Liang Wang ◽  
Chao Chen ◽  
Haisheng Chen

Sign in / Sign up

Export Citation Format

Share Document