Impact of energy storage of new hybrid system of phase change materials combined with air-conditioner on its heating and cooling performance

2021 ◽  
Vol 36 ◽  
pp. 102400
Author(s):  
M.A. Said ◽  
Hamdy Hassan
2018 ◽  
Vol 40 (5) ◽  
pp. 560-575
Author(s):  
Jehanzeb Ahmad ◽  
M Najam Ul Islam ◽  
Jawwad Sabir

The benefits of thermal energy storage using phase change materials are well documented in the literature. Despite all the potential benefits of thermal energy storage, its commercial and widespread application remains limited. This is due to the high initial cost of phase change materials, extensive rework required in buildings, major modifications in HVAC systems, and the potential for leakage, fire and toxicity hazards. There is a strong need for a simple thermal energy storage solution which can be adopted by large number of consumers. Ductless split air-conditioners are portable, low cost, efficient and account for 70% of all air-conditioning systems sold worldwide each year. The present research provides a novel and low cost solution that incorporates thermal energy storage in these air conditioners, allowing them to run without electricity for 3 h. The paper deals with the detailed design aspects and engineering challenges that arise when incorporating thermal energy storage in these small units. A prototype air-conditioner with in-built thermal energy storage was developed, and all performance parameters presented have been validated through data obtained from the prototype. Our results indicate that thermal energy storage can be incorporated in split units in low cost and with minimal drop in overall energy efficiency of the system. Practical application: Incorporating thermal energy storage in split air-conditioners which enables them to run without grid for many hours has immense practical applications. Since around 50% power in any building is consumed by HVAC systems, being able to provide cooling during peak hours without using grid can significantly reduce load on the grid without compromising user comfort. For developing countries where load shedding is frequent, the users can run these air-conditioners without the use of generators or batteries thus saving costs and the environment.


2020 ◽  
Vol 24 (3 Part B) ◽  
pp. 2151-2169 ◽  
Author(s):  
Syeda Tariq ◽  
Hafiz Ali ◽  
Muhammad Akram

Phase change materials (PCM) with their high latent heat capacity have a great ability to store energy during their phase change process. The PCM are renowned for their applications in solar and thermal energy storage systems for the purpose of heating and cooling. However, one of the major drawbacks of PCM is their low thermal conductivity due to which their charging and discharging time reduces along with the reduction in energy storage capacity. This reduction in the energy storage capacity of PCM can be improved by producing organic-inorganic hybrid form-stable PCM, with the combination of two or more PCM together to increase their energy storage capacity. Nanoparticles that possess high thermal conductivity are also doped with these hybrid PCM (HPCM)to improve the effectiveness of thermal conductivity. This paper presents a short review on the applications of HPCM in energy storage and building application. Apart from this a short section of applications of composite PCM (CPCM) is also reviewed with discussions made at the end of each section. Results from the past literature depicted that the application of these HPCM and CPCM enhanced the energy storage capacity and thermal conductivity of the base PCM and selection of a proper hybrid material plays an essential role in their stability. It is presumed that this study will provide a sagacity, to the readers, to investigate their thermophysical properties and other essential applications.


2014 ◽  
Vol 1077 ◽  
pp. 124-128
Author(s):  
Milan Ostrý ◽  
Pavel Charvát ◽  
Tomáš Klubal ◽  
Lubomír Klimeš

Energy storage can even out mismatches between the demand and supply of energy, thereby improving the system performance and reducing the cost of building operation. The energy storage is a key issue in the wider use of renewable energy. The experiments carried out at Brno University of Technology focus on the latent heat storage techniques for application in radiant heating and cooling of residential and office buildings. The latent heat storage techniques utilize Phase Change Materials (PCMs) as a heat storage medium and thus allow for the reduction of the amount of heat storage material due to the high heat storage density per volume or weight. In the past, much attention was paid to encapsulation of PCMs. The PCMs undergo phase change from solid to liquid and vice versa during a heat storage cycle and there is a risk of leakage of the PCMs to the building material or indoor environment. The microencapsulated organic PCMs in a mixture with gypsum plaster were used in the investigations described in this paper. The investigations involved both lab-scale experiments and numerical simulations.


Author(s):  
Huimin Yan ◽  
Huning Yang ◽  
Jipeng Luo ◽  
Nan Yin ◽  
Zhicheng Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document