Transient flow behaviors of the check valve with different spool-head angle in high-pressure hydrogen storage systems

2022 ◽  
Vol 46 ◽  
pp. 103761
Author(s):  
Jianjun Ye ◽  
Zhenhua Zhao ◽  
Junxu Cui ◽  
Zhengli Hua ◽  
Wenzhu Peng ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4222
Author(s):  
Jianjun Ye ◽  
Zhenhua Zhao ◽  
Jinyang Zheng ◽  
Shehab Salem ◽  
Jiangcun Yu ◽  
...  

In high-pressure hydrogen systems, the check valve is one of the most easy-to-damage components. Generally, the high-pressure hydrogen flow can generate a strong impact on the check valve, which can cause damage and failure. Therefore, it is useful to study the transient flow characteristics of the high-pressure hydrogen flow in check valves. Using dynamic mesh generation and the National Institute of Standards and Technology (NIST) real hydrogen gas model, a transient-flow model of the high-pressure hydrogen for the check valve is established. First, the flow properties of high-pressure hydrogen during the opening process is investigated, and velocity changes and pressure distribution of hydrogen gas flow are studied. In addition, the fluid force, acceleration, and velocity of the valve spool are analyzed quantitatively. Subsequently, the effect of the hydrogen inlet-pressure on the movement characteristic of the valve spool is investigated. The results of this study can improve both the design and applications of check valves in high-pressure hydrogen systems.


2014 ◽  
Vol 59 (19) ◽  
pp. 2302-2308 ◽  
Author(s):  
Xue-Fang Li ◽  
David M. Christopher ◽  
Jing-Liang Bi

Author(s):  
Z. Y. Li ◽  
C. L. Zhou ◽  
Y. Z. Zhao ◽  
Z. L. Hua ◽  
L. Zhang ◽  
...  

Crack growth analysis (CGA) was applied to estimate the cycle life of the high-pressure hydrogen equipment constructed by the practical materials of 4340 (two heats), 4137, 4130X, A286, type 316 (solution-annealed (SA) and cold-worked (CW)), and type 304 (SA and CW) in 45, 85 and 105 MPa hydrogen and air. The wall thickness was calculated following five regulations of the High Pressure Gas Safety Institute of Japan (KHK) designated equipment rule, KHKS 0220, TSG R0002, JB4732, and ASME Sec. VIII, Div. 3. We also applied CGA for four typical model materials to discuss the effect of ultimate tensile strength (UTS), pressure and hydrogen sensitivity on the cycle life of the high-pressure hydrogen equipment. Leak before burst (LBB) was confirmed in all practical materials in hydrogen and air. The minimum KIC required for LBB of the model material with UTS of even 1500 MPa was 170 MPa·m0.5 in 105 MPa. Cycle life qualified 103 cycles for all practical materials in air. In 105 MPa hydrogen, the cycle life by KIH was much shorter than that in air for two heats of 4340 and 4137 sensitive to hydrogen gas embrittlement (HGE). The cycle life of type 304 (SA) sensitive to HGE was almost above 104 cycles in hydrogen, while the cycle life of type 316 (SA and CW) was not affected by hydrogen and that of A286 in hydrogen was near to that in air. It was discussed that the cycle life increased with decreasing pressure or UTS in hydrogen. This behavior was due to that KIH increased or fatigue crack growth (FCG) decreased with decreasing pressure or UTS. The cycle life data of the model materials under the conditions of the pressure, UTS, KIH, FCG and regulations in both hydrogen and air were proposed quantitatively for materials selection for high-pressure hydrogen storage.


2011 ◽  
Author(s):  
B. P. Vinayan ◽  
K. Sethupathi ◽  
S. Ramaprabhu ◽  
Alka B. Garg ◽  
R. Mittal ◽  
...  

2015 ◽  
Vol 40 (38) ◽  
pp. 13183-13192 ◽  
Author(s):  
Juan Pedro Berro Ramirez ◽  
Damien Halm ◽  
Jean-Claude Grandidier ◽  
Stéphane Villalonga ◽  
Fabien Nony

Sign in / Sign up

Export Citation Format

Share Document