Artificial neural networks with evolutionary instance selection for financial forecasting

2006 ◽  
Vol 30 (3) ◽  
pp. 519-526 ◽  
Author(s):  
Kyoung-jae Kim
Author(s):  
Andrew Lishchytovych ◽  
Volodymyr Pavlenko

The object of this study is to analyse the effectiveness of document ran­ king algorithms in search engines that use artificial neural networks to match the texts. The purpose of the study was to inspect a neural network model of text document ran­ king that uses clustering, factor analysis, and multi-layered network architecture. The work of neural network algorithms was compared with the standard statistical search algorithm OkapiBM25. The result of the study is to evaluate the effectiveness of the use of particular models and to recommend model selection for specific datasets.


1994 ◽  
Vol 2 (1) ◽  
pp. 101-116 ◽  
Author(s):  
Orazio Miglino ◽  
Kourosh Nafasi ◽  
Charles E. Taylor

We have evolved artificial neural networks to control the wandering behavior of small robots. The task and environment were very simple—to touch as many squares in a grid as possible during a fixed period of time. A number of the simulated robots were embodied in a small Lego™ robot, controlled by a Motorola™ 6811 processor; and their performance was compared to the simulations. We observed that: (a) evolution was an effective means to program the robot's behavior; (b) progress was characterized by sharply stepped periods of improvement, separated by periods of stasis that corresponded to levels of behavioral/computational complexity; and (c) the simulated and realized robots behaved quite similarly, the realized robots in some cases outperforming the simulated ones. Introducing random noise to the simulations improved the fit somewhat (from r = 0.73 to 0.79). Hybrid simulated/embodied selection regimes for evolutionary robots are discussed.


Sign in / Sign up

Export Citation Format

Share Document