Reliability analysis of the complex mode indicator function and Hilbert Transform techniques for operational modal analysis

2012 ◽  
Vol 39 (18) ◽  
pp. 13289-13294 ◽  
Author(s):  
Pelin Gundes Bakir ◽  
Ender Mete Eksioglu ◽  
Serhat Alkan
2015 ◽  
Vol 732 ◽  
pp. 183-186
Author(s):  
Róbert Huňady ◽  
Martin Hagara ◽  
Martin Schrötter

Paper deals with the identification of coupled mode shapes by experimental modal analysis. Main attention is focused on the using of Complex Mode Indicator Function that is based on singular value decomposition of frequency response function matrix and allows to separate coupled and also closed modes. In the paper there is described experimental modal analysis at which digital image correlation method is used to measure responses of a circular plate. The measurement was evaluated in program Modan 3D that is being developed by the authors.


2021 ◽  
Author(s):  
David F. Castillo Zuñiga ◽  
Alain Giacobini Souza ◽  
Roberto G. da Silva ◽  
Luiz Carlos Sandoval Góes

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1602
Author(s):  
Ángel Molina-Viedma ◽  
Elías López-Alba ◽  
Luis Felipe-Sesé ◽  
Francisco Díaz

Experimental characterization and validation of skin components in aircraft entails multiple evaluations (structural, aerodynamic, acoustic, etc.) and expensive campaigns. They require different rigs and equipment to perform the necessary tests. Two of the main dynamic characterizations include the energy absorption under impact forcing and the identification of modal parameters through the vibration response under any broadband excitation, which also includes impacts. This work exploits the response of a stiffened aircraft composite panel submitted to a multi-impact excitation, which is intended for impact and energy absorption analysis. Based on the high stiffness of composite materials, the study worked under the assumption that the global response to the multi-impact excitation is linear with small strains, neglecting the nonlinear behavior produced by local damage generation. Then, modal identification could be performed. The vibration after the impact was measured by high-speed 3D digital image correlation and employed for full-field operational modal analysis. Multiple modes were characterized in a wide spectrum, exploiting the advantages of the full-field noninvasive techniques. These results described a consistent modal behavior of the panel along with good indicators of mode separation given by the auto modal assurance criterion (Auto-MAC). Hence, it illustrates the possibility of performing these dynamic characterizations in a single test, offering additional information while reducing time and investment during the validation of these structures.


2021 ◽  
Vol 373 ◽  
pp. 111017
Author(s):  
Luis Alejandro Torres Delgado ◽  
Vasudha Verma ◽  
Cristina Montalvo ◽  
Abdelhamid Dokhane ◽  
Agustín García-Berrocal

2021 ◽  
Vol 209 ◽  
pp. 104490
Author(s):  
K. Luis García ◽  
K. Maes ◽  
V. Elena Parnás ◽  
G. Lombaert

Procedia CIRP ◽  
2018 ◽  
Vol 77 ◽  
pp. 473-476 ◽  
Author(s):  
Jan Berthold ◽  
Martin Kolouch ◽  
Volker Wittstock ◽  
Matthias Putz

Sign in / Sign up

Export Citation Format

Share Document