Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges

2018 ◽  
Vol 105 ◽  
pp. 233-261 ◽  
Author(s):  
Henry Friday Nweke ◽  
Ying Wah Teh ◽  
Mohammed Ali Al-garadi ◽  
Uzoma Rita Alo
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Huaijun Wang ◽  
Jing Zhao ◽  
Junhuai Li ◽  
Ling Tian ◽  
Pengjia Tu ◽  
...  

Human activity recognition (HAR) can be exploited to great benefits in many applications, including elder care, health care, rehabilitation, entertainment, and monitoring. Many existing techniques, such as deep learning, have been developed for specific activity recognition, but little for the recognition of the transitions between activities. This work proposes a deep learning based scheme that can recognize both specific activities and the transitions between two different activities of short duration and low frequency for health care applications. In this work, we first build a deep convolutional neural network (CNN) for extracting features from the data collected by sensors. Then, the long short-term memory (LTSM) network is used to capture long-term dependencies between two actions to further improve the HAR identification rate. By combing CNN and LSTM, a wearable sensor based model is proposed that can accurately recognize activities and their transitions. The experimental results show that the proposed approach can help improve the recognition rate up to 95.87% and the recognition rate for transitions higher than 80%, which are better than those of most existing similar models over the open HAPT dataset.


2022 ◽  
Vol 54 (8) ◽  
pp. 1-34
Author(s):  
Fuqiang Gu ◽  
Mu-Huan Chung ◽  
Mark Chignell ◽  
Shahrokh Valaee ◽  
Baoding Zhou ◽  
...  

Human activity recognition is a key to a lot of applications such as healthcare and smart home. In this study, we provide a comprehensive survey on recent advances and challenges in human activity recognition (HAR) with deep learning. Although there are many surveys on HAR, they focused mainly on the taxonomy of HAR and reviewed the state-of-the-art HAR systems implemented with conventional machine learning methods. Recently, several works have also been done on reviewing studies that use deep models for HAR, whereas these works cover few deep models and their variants. There is still a need for a comprehensive and in-depth survey on HAR with recently developed deep learning methods.


2019 ◽  
Vol 6 (5) ◽  
pp. 8553-8562 ◽  
Author(s):  
Valentina Bianchi ◽  
Marco Bassoli ◽  
Gianfranco Lombardo ◽  
Paolo Fornacciari ◽  
Monica Mordonini ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8227
Author(s):  
Saad Irfan ◽  
Nadeem Anjum ◽  
Nayyer Masood ◽  
Ahmad S. Khattak ◽  
Naeem Ramzan

In recent years, a plethora of algorithms have been devised for efficient human activity recognition. Most of these algorithms consider basic human activities and neglect postural transitions because of their subsidiary occurrence and short duration. However, postural transitions assume a significant part in the enforcement of an activity recognition framework and cannot be neglected. This work proposes a hybrid multi-model activity recognition approach that employs basic and transition activities by utilizing multiple deep learning models simultaneously. For final classification, a dynamic decision fusion module is introduced. The experiments are performed on the publicly available datasets. The proposed approach achieved a classification accuracy of 96.11% and 98.38% for the transition and basic activities, respectively. The outcomes show that the proposed method is superior to the state-of-the-art methods in terms of accuracy and precision.


Sign in / Sign up

Export Citation Format

Share Document