Using vortex strength wake oscillator in modelling of vortex induced vibrations in two degrees of freedom

2014 ◽  
Vol 48 ◽  
pp. 165-173 ◽  
Author(s):  
Xu Bai ◽  
Wei Qin
2012 ◽  
Vol 204-208 ◽  
pp. 4598-4601
Author(s):  
Jie Li Fan ◽  
Wei Ping Huang

The two-degrees-of-freedom of vortex-induced vibration of circular cylinders is numerically simulated with the software ANSYS/CFX. The VIV characteristic, in the two different conditions (A/D=0.07 and A/D=1.0), is analyzed. When A/D is around 0.07, the amplitude ratio of the cylinder’s VIV between in-line and cross-flow direction in the lock-in is lower than that in the lock-out. The in-line frequency is twice of that in cross-flow direction in the lock-out, but in the lock-in, it is the same as that in cross-flow direction and the same as that of lift force. When A/D is around 1.0, the amplitude ratio of the VIV between in-line and cross-flow in the lock-in is obviously larger than that in the lock-out. Both in the lock-in and in the lock-out, the in-line frequency is twice of that in cross-flow direction.


2013 ◽  
Author(s):  
Kintak Raymond Yu ◽  
Alexander Hay ◽  
Dominique Pelletier ◽  
Simon Corbeil-Létourneau ◽  
Shahin Ghasemi ◽  
...  

Vortex-induced vibration is an important phenomenon for offshore engineering. For applications like the piping in the deep water oil exploration projects, the mass ratios can be of order of one [1]. Hence, there is a practical need to understand the effects of low mass ratio on vortex-induced vibrations to enhance design safety. The main purpose of this study is to numerically explore the two degrees of freedom (transverse and streamwise) responses of vortex-induced vibrations of a cylinder at low Reynolds number for the limiting case of zero mass ratio and zero damping. We aim to characterize the responses. In particular, we focus on determining the maximum amplitude values. It is a continuation from the work of Etienne and Pelletier who studied such behaviors at very low Reynolds number (Re < 50) [2]. We investigate the responses in the following parameter space: Reynolds number (75 ≤ Re ≤ 175), reduced velocity (5.0 ≤ Ur ≤ 11.0) and mass ratio (m* = {0, 0.1, 1}) with a fully coupled fluid-structure interaction numerical model based on the finite element method. Our results are generally in accordance with those from previous works for the displacement trajectories, force phase diagram, and the trends in frequency response and oscillation amplitude. The maximum transverse amplitude is found to be around 0.9 in the studied parameter space. In particular, with zero mass ratio, the maximum transverse amplitude starts to occur at values of reduced velocity higher than 6.5 for Reynolds number larger than 150. This is in contrast to the results of Etienne and Pelletier [2] who found that the maximum transverse amplitude always occurs at the reduced velocity of 6.5 for Reynolds number less than 50. Furthermore, with zero mass ratio, the maximum transverse amplitude increases when the Reynolds number increases. This behavior differs from what was suggested by Williamson and Govardhan [3] for a cylinder oscillating only in the transverse direction at Reynolds numbers in the range of 85 to 200. They found that the Reynolds number has no influence on the maximum transverse amplitude. We do not notice any response branching in this parameter space. However, the results in the present work clearly consist of two distinct characteristics. This indicates that the investigated mass ratio values encompass the critical mass ratio; whose value is estimated to be around 0.1 to 0.2.


Author(s):  
Dongyang Chen ◽  
Chaojie Gu ◽  
Ruihua Zhang ◽  
Jiaying Liu ◽  
Dian Guo ◽  
...  

Abstract Vortex-induced vibration (VIV) is a common fluid-structure interaction (FSI) phenomenon in the field of wind engineering and marine engineering. The large-amplitude VIV has a marked impact on the slender structure in fluids, at times even destructive. To study how the VIV can be controlled, the dynamics of a rigid cylinder attached to a rotational nonlinear energy sink (R-NES) is investigated in this paper. This is done using a two degrees of freedom (2-DOF) Van der Pol wake oscillator model adapted to consider a coupled vibration in cross-flow and streamwise directions. The governing equation of R-NES are coupled to the wake oscillator model, hence a flow-cylinder-NES coupled system is established. While exploring the dynamics of the cylinders with different mass ratios under the action of R-NES, it was found that the R-NES deliver better performance in suppressing the VIV of a cylinder with high mass ratios than that of a low mass ratios cylinder. The effect of the distinct parameters of R-NES on VIV response was also systematically investigated in this study. The results indicate that higher mass parameter and rotation radius can lead to improved performance, while the effect of the damping parameter is complex, and appears to be linked to the mass ratio of the column structure.


Author(s):  
Arnaud Sanchis

VIV experiments in two degrees of freedom are performed with a new apparatus designed to achieve a very low mass ratio and structural damping (ζ = 0.01). We investigated the influence of the ratio between the natural frequencies in the horizontal (fx) and vertical (fy) directions on the system response. Experiments were conducted at fx/fy = 0.42, 0.87, 1.16, 1.36 and 1.44 with mx* = 2.87 and my* = 1.65. For fx/fy < 1, the amplitude and frequency response were found to be similar to the classical case where fx/fy = 1, except in the transition zone between the upper and lower branches. For fx/fy > 1 however, radical changes were observed in the system response in amplitude, frequency and phase θ between the horizontal and vertical displacements. The most obvious is the appearance of a local maximum of Ay* in the middle of the upper branch. Secondly, the nature of the transition between the upper and lower branches changes from intermittent switching to a hysteretic one. The shape of the figure-of-eights describing the cylinder trajectory is also affected so that the cylinder is moving upstream at the top of its trajectory instead of downstream, indicating a profound modification of the interaction between the two degrees of freedom. Lastly, the range of reduced velocities over which stable, two-degrees-of-freedom oscillations were recorded is greatly increased up to 3.8 < U* < 8.4.


Sign in / Sign up

Export Citation Format

Share Document