scholarly journals Corrigendum to “Revisiting the polyvinylidene fluoride heterogeneous alkaline reaction mechanism in propan-2-ol: An additional hydrogenation step” [Eur. Polym. J. 156 (2021) 110605]

2021 ◽  
Vol 159 ◽  
pp. 110710
Author(s):  
Mohamed Magdi Ahmed ◽  
Jakub Hrůza ◽  
Martin Stuchlík ◽  
Vojtěch Antoš ◽  
Jana Müllerová ◽  
...  
2021 ◽  
pp. 110605
Author(s):  
Mohamed Magdi Ahmed ◽  
Jakub Hrůza ◽  
Martin Stuchlík ◽  
Vojtěch Antoš ◽  
Jana Müllerová ◽  
...  

Author(s):  
Martin Schon ◽  
Oliver Calderon ◽  
Nick Randell ◽  
Santiago Jimenez Villegas ◽  
Katelynn M. Daly ◽  
...  

Amorphous nickel-iron mixed metal oxides have been shown to be extremely efficient oxygen evolution reaction (OER) electrocatalysts with good stability in alkaline reaction conditions. Thus, they offer an economical alternative...


Holzforschung ◽  
2017 ◽  
Vol 71 (12) ◽  
pp. 961-967
Author(s):  
Bill Mangindaan ◽  
Yasuyuki Matsushita ◽  
Dan Aoki ◽  
Sachie Yagami ◽  
Kazuhiko Fukushima

AbstractThe stability and chemical reactions of lignans during alkaline cooking is not yet fully clarified although their degradation products may have a considerable effect on the pulp and its bleaching, such as spotting and color contamination. To fill this gap, a phenolic lignan (pinoresinol) and four non-phenolic furofuran lignans (gmelinol, paulownin, eudesmin and sesamin) were submitted to alkaline cooking at various conditions. The effect of cooking duration shows that non-phenolic lignans are more stable during a 3-h reaction time than pinoresinol. After a 24-h reaction, most of the lignans were decomposed or polymerized. The effect of cooking temperature shows that pinoresinol, eudesmin and sesamin are more susceptible to degradation with increasing temperature. The concentration of the alkaline liquors only affect significantly to pinoresinol because of its acidity. It was also observed that pinoresinol, gmelinol and eudesmin give rise to small amounts of vanillin and acetovanillone, while paulownin and sesamin were mainly polymerized or degraded. To confirm the reaction mechanism of the occurrence of acetovanillone in the reaction,13C-labeled pinoresinol was also submitted to alkaline cooking. It was revealed that the cleavage at β-β′ position occurred during alkaline reaction. The stability of these compounds during alkaline cooking are not affected by the hydroxyl group in the C-β′ position.


RSC Advances ◽  
2017 ◽  
Vol 7 (46) ◽  
pp. 29193-29199
Author(s):  
Yongxiang Zhuang ◽  
Dan Li ◽  
Peipei Ding ◽  
Zhi Xu ◽  
Wenheng Jing

Illustration of reaction mechanism of the EF process.


Author(s):  
Tomasz J. Idzik ◽  
Zofia M. Myk ◽  
Łukasz Struk ◽  
Magdalena Perużyńska ◽  
Gabriela Maciejewska ◽  
...  

Triisopropylsilyltrifluoromethanesulfonate can be effectively used for the arylation of a wide range of enelactams. The multinuclear NMR study provided deep insights into the reaction mechanism.


2009 ◽  
Author(s):  
Mendel Fleisher ◽  
E. Lukevics ◽  
L. Leite ◽  
D. Jansone ◽  
K. Edolfa ◽  
...  

Clean Air ◽  
2007 ◽  
Vol 8 (1) ◽  
pp. 1-24
Author(s):  
M. Pourkashanian ◽  
N. S. Mera ◽  
Lionel Elliott ◽  
C. W. Wilson ◽  
Derek B. Ingham ◽  
...  

2020 ◽  
Author(s):  
Kiron Kumar Ghosh ◽  
Alexander Uttry ◽  
Francesca Ghiringhelli ◽  
Arup Mondal ◽  
Manuel van Gemmeren

We report the ligand enabled C(sp3)–H activation/olefination of free carboxylic acids in the γ-position. Through an intramolecular Michael-addition, δ-lactones are obtained as products. Two distinct ligand classes are identified that enable the challenging palladium-catalyzed activation of free carboxylic acids in the γ-position. The developed protocol features a wide range of acid substrates and olefin reaction partners and is shown to be applicable on a preparatively useful scale. Insights into the underlying reaction mechanism obtained through kinetic studies are reported.<br>


2019 ◽  
Author(s):  
Clare Bakewell ◽  
Martí Garçon ◽  
Richard Y Kong ◽  
Louisa O'Hare ◽  
Andrew J. P. White ◽  
...  

The reactions of an aluminium(I) reagent with a series of 1,2-, 1,3- and 1,5-dienes are reported. In the case of 1,3-dienes the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to form aluminocyclopentene containing products. This mechanism has been interrogated by stereochemical experiments and DFT calculations. The stereochemical experiments show that the (4+1) cycloaddition follows a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4+1) cycloaddition includes dienes that are either in part, or entirely, contained within aromatic rings. In these cases, reactions occur with dearomatisation of the substrate and can be reversible. In the case of 1,2- or 1,5-dienes complementary reactivity is observed; the orthogonal nature of the C=C π-bonds (1,2-diene) and the homoconjugated system (1,5-diene) both disfavour a (4+1) cycloaddition. Rather, reaction pathways are determined by an initial (2+1) cycloaddition to form an aluminocyclopropane intermediate which can in turn undergo insertion of a further C=C π-bond leading to complex organometallic products that incorporate fused hydrocarbon rings.


Sign in / Sign up

Export Citation Format

Share Document