scholarly journals Circulating Tumor DNA Abundance and Potential Utility in De Novo Metastatic Prostate Cancer

2019 ◽  
Vol 75 (4) ◽  
pp. 667-675 ◽  
Author(s):  
Gillian Vandekerkhove ◽  
Werner J. Struss ◽  
Matti Annala ◽  
Heini M.L. Kallio ◽  
Daniel Khalaf ◽  
...  
2019 ◽  
Vol 76 (3) ◽  
pp. e69-e72
Author(s):  
Rodolfo Montironi ◽  
Liang Cheng ◽  
Marina Scarpelli ◽  
Alessia Cimadamore ◽  
Francesco Montorsi ◽  
...  

2018 ◽  
Vol 199 (4S) ◽  
Author(s):  
Werner J Struss ◽  
Gillian Vandekerkhove ◽  
Matti Annala ◽  
Kevin Beja ◽  
Kim N Chi ◽  
...  

2019 ◽  
pp. 1-9 ◽  
Author(s):  
Sinja Taavitsainen ◽  
Matti Annala ◽  
Elisa Ledet ◽  
Kevin Beja ◽  
Patrick J. Miller ◽  
...  

PURPOSE Circulating tumor DNA (ctDNA) sequencing provides a minimally invasive method for tumor molecular stratification. Commercial ctDNA sequencing is increasingly used in the clinic, but its accuracy in metastatic prostate cancer is untested. We compared the commercial Guardant360 ctDNA test against an academic sequencing approach for profiling metastatic prostate cancer. PATIENTS AND METHODS Plasma cell-free DNA was collected between September 2016 and April 2018 from 24 patients with clinically progressive metastatic prostate cancer representing a range of clinical scenarios. Each sample was analyzed using Guardant360 and a research panel encompassing 73 prostate cancer genes. Concordance of somatic mutation and copy number calls was evaluated between the two approaches. RESULTS Targeted sequencing independently confirmed 94% of somatic mutations identified by Guardant360 at an allele fraction greater than 1%. AR amplifications and mutations were detected with high concordance in 14 patients, with only three discordant subclonal mutations at an allele fraction lower than 0.5%. Many somatic mutations identified by Guardant360 at an allele fraction lower than 1% seemed to represent subclonal passenger events or non–prostate-derived clones. Most of the non- AR gene amplifications reported by Guardant360 represented single copy gains. The research approach detected several clinically relevant DNA repair gene alterations not reported by Guardant360, including four germline truncating BRCA2/ ATM mutations, two somatic ATM stop gain mutations, one BRCA2 biallelic deletion, 11 BRCA2 stop gain reversal mutations in a patient treated with olaparib, and a hypermutator phenotype in a patient sample with 42 mutations per megabase. CONCLUSION Guardant360 accurately identifies somatic ctDNA mutations in patients with metastatic prostate cancer, but low allele frequency mutations should be interpreted with caution. Test utility in metastatic prostate cancer is currently limited by the lack of reporting on actionable deletions, rearrangements, and germline mutations.


2021 ◽  
Vol 16 (4) ◽  
Author(s):  
Michael P. Kolinsky ◽  
Karen Y. Niederhoffer ◽  
Edmond M. Kwan ◽  
Sebastien J. Hotte ◽  
Zineb Hamilou ◽  
...  

Olaparib is the first Health Canada-approved agent in metastatic prostate cancer to use a companion diagnostic to identify alterations in BRCA1, BRCA2, or ATM. As olaparib is introduced, clinicians must learn to access and interpret germline and somatic next-generation sequencing (NGS) results, and how to manage affected patients who appear to have distinct clinical features. The traditional model of referring patients to a hereditary cancer clinic (HCC) for germline testing is likely impractical in this disease, as the metastatic prostate cancer patient population would be overwhelming. Alternate approaches to this are clinician-ordered genetic testing (so-called “mainstreaming”), out-of-pocket payment for third-party private company genetic testing, or germline testing done in conjunction with somatic testing, particularly cell free circulating tumor DNA (ctDNA). Germline testing alone is not sufficient for identifying Olaparib-eligible patients, as less than half of BRCA1, BRCA2, or ATM alterations are germline in origin, but it is critically important to identify family members who are carriers so that risk-reduction measures can be undertaken. Somatic testing is not widely available in Canada, but some patients can access it through research protocols or by paying out-of-pocket. Somatic testing can be performed on archival or fresh solid tissue biopsy samples, or through whole blood samples to access plasma-derived circulating tumor DNA (ctDNA). Both testing approaches have relative advantages and disadvantages, but neither may be informative in all patients and, therefore, ideal somatic NGS pathways should provide options for both tissue and ctDNA testing. We advocate that clinicians begin discussions with their provincial lab formularies, HCC, and molecular pathology labs to highlight the importance of germline and somatic testing in this population and identify pathways for patient access. While olaparib has approval for use in BRCA1, BRCA2, and ATM-altered mCRPC, emerging evidence suggests that PARP inhibitors have variable activity in these three genes, with BRCA2 alterations appearing to be the most responsive. Retrospective and prospective series have reported varying outcomes to standard of care therapies, such as ARATs and taxane-based chemotherapy, in metastatic castration-resistant prostate cancer (mCRPC) patients with DNA damage repair (DDR) gene alterations, such as BRCA2. In the absence of high-level evidence showing a lack of benefit, we believe this patient population should still be considered for these treatments. In addition, platinum-based chemotherapy appears to have activity in DDR gene-altered mCRPC and should be considered another option when access to olaparib is not possible. At present, there is no evidence to support an optimal treatment sequence in this patient population, therefore, physician and patient preferences will need to be taken into consideration when selecting therapies. As olaparib and other PARP inhibitors are tested in different disease states and in combination with other therapies, we will likely see a more refined approach to use of these agents and management of this new biomarker-defined patient population.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1362
Author(s):  
Marianne Trier Bjerre ◽  
Maibritt Nørgaard ◽  
Ole Halfdan Larsen ◽  
Sarah Østrup Jensen ◽  
Siri H. Strand ◽  
...  

Novel and minimally-invasive prostate cancer (PCa)-specific biomarkers are needed to improve diagnosis and risk stratification. Here, we investigated the biomarker potential in localized and de novo metastatic PCa (mPCa) of methylated circulating tumor DNA (ctDNA) in plasma. Using the Marmal-aid database and in-house datasets, we identified three top candidates specifically hypermethylated in PCa tissue: DOCK2, HAPLN3, and FBXO30 (specificity/sensitivity: 80%–100%/75–94%). These candidates were further analyzed in plasma samples from 36 healthy controls, 61 benign prostatic hyperplasia (BPH), 102 localized PCa, and 65 de novo mPCa patients using methylation-specific droplet digital PCR. Methylated ctDNA for DOCK2/HAPLN3/FBXO30 was generally not detected in healthy controls, BPH patients, nor in patients with localized PCa despite a positive signal in 98%–100% of matched radical prostatectomy tissue samples. However, ctDNA methylation of DOCK2, HAPLN3, and/or FBXO30 was detected in 61.5% (40/65) of de novo mPCa patients and markedly increased in high- compared to low-volume mPCa (89.3% (25/28) vs. 32.1% (10/31), p < 0.001). Moreover, detection of methylated ctDNA was associated with significantly shorter time to progression to metastatic castration resistant PCa, independent of tumor-volume. These results indicate that methylated ctDNA (DOCK2/HAPLN3/FBXO30) may be potentially useful for identification of hormone-naïve mPCa patients who could benefit from intensified treatment.


2018 ◽  
Vol 29 ◽  
pp. viii273
Author(s):  
W.J. Struss ◽  
G. Vandekerkhove ◽  
M. Annala ◽  
K.N. Chi ◽  
M.E. Gleave ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document