scholarly journals Detection of circulating tumor DNA in de novo metastatic castrate sensitive prostate cancer

2018 ◽  
Vol 29 ◽  
pp. viii273
Author(s):  
W.J. Struss ◽  
G. Vandekerkhove ◽  
M. Annala ◽  
K.N. Chi ◽  
M.E. Gleave ◽  
...  
2019 ◽  
Vol 75 (4) ◽  
pp. 667-675 ◽  
Author(s):  
Gillian Vandekerkhove ◽  
Werner J. Struss ◽  
Matti Annala ◽  
Heini M.L. Kallio ◽  
Daniel Khalaf ◽  
...  

2018 ◽  
Vol 199 (4S) ◽  
Author(s):  
Werner J Struss ◽  
Gillian Vandekerkhove ◽  
Matti Annala ◽  
Kevin Beja ◽  
Kim N Chi ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1362
Author(s):  
Marianne Trier Bjerre ◽  
Maibritt Nørgaard ◽  
Ole Halfdan Larsen ◽  
Sarah Østrup Jensen ◽  
Siri H. Strand ◽  
...  

Novel and minimally-invasive prostate cancer (PCa)-specific biomarkers are needed to improve diagnosis and risk stratification. Here, we investigated the biomarker potential in localized and de novo metastatic PCa (mPCa) of methylated circulating tumor DNA (ctDNA) in plasma. Using the Marmal-aid database and in-house datasets, we identified three top candidates specifically hypermethylated in PCa tissue: DOCK2, HAPLN3, and FBXO30 (specificity/sensitivity: 80%–100%/75–94%). These candidates were further analyzed in plasma samples from 36 healthy controls, 61 benign prostatic hyperplasia (BPH), 102 localized PCa, and 65 de novo mPCa patients using methylation-specific droplet digital PCR. Methylated ctDNA for DOCK2/HAPLN3/FBXO30 was generally not detected in healthy controls, BPH patients, nor in patients with localized PCa despite a positive signal in 98%–100% of matched radical prostatectomy tissue samples. However, ctDNA methylation of DOCK2, HAPLN3, and/or FBXO30 was detected in 61.5% (40/65) of de novo mPCa patients and markedly increased in high- compared to low-volume mPCa (89.3% (25/28) vs. 32.1% (10/31), p < 0.001). Moreover, detection of methylated ctDNA was associated with significantly shorter time to progression to metastatic castration resistant PCa, independent of tumor-volume. These results indicate that methylated ctDNA (DOCK2/HAPLN3/FBXO30) may be potentially useful for identification of hormone-naïve mPCa patients who could benefit from intensified treatment.


2019 ◽  
Vol 76 (3) ◽  
pp. e69-e72
Author(s):  
Rodolfo Montironi ◽  
Liang Cheng ◽  
Marina Scarpelli ◽  
Alessia Cimadamore ◽  
Francesco Montorsi ◽  
...  

2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 25-25
Author(s):  
Hanna Tukachinsky ◽  
Russell Madison ◽  
Jon Chung ◽  
Lucas Dennis ◽  
Bernard Fendler ◽  
...  

25 Background: Comprehensive genomic profiling (CGP) by next-generation sequencing (NGS) of circulating tumor DNA (ctDNA) from plasma provides a minimally invasive method to identify targetable genomic alterations (GAs) and resistance mechanisms in patients with metastatic castration-resistant prostate cancer (mCRPC). The circulating tumor fraction in patients with mCRPC and the clinical validity of GAs detected in plasma remain unknown. We evaluated the landscape of GAs using ctDNA-based CGP and assessed concordance with tissue-based CGP. Methods: Plasma from 3,334 patients with advanced prostate cancer (including 1,674 mCRPC screening samples from the TRITON2/3 trials and 1,660 samples from routine clinical CGP) was analyzed using hybrid-capture-based gene panel NGS assays. Results were compared with CGP of 2,006 metastatic prostate cancer tissue biopsies. Concordance was evaluated in 837 patients with both tissue (archival or contemporaneous) and plasma NGS results. Results: 3,127 patients [94%] had detectable ctDNA. BRCA1/2 were mutated in 295 patients [8.8%]. In concordance analysis, 72/837 [8.6%] patients had BRCA1/2 mutations detected in tissue, 67 [93%] of whom were also identified by ctDNA, and 20 patients were identified using ctDNA but not tissue [23% of all patients identified using ctDNA]. ctDNA detected subclonal BRCA1/2 reversions in 10 of 1,660 [0.6%] routine clinical CGP samples. AR alterations, including amplifications and hotspot mutations, which were detected in 940/2,213 patients [42%]. Rare AR compound mutations, rearrangements, and novel in-frame deletions were identified. Altered pathways included PI3K/AKT/mTOR [14%], WNT/β-catenin [17%], and RAS/RAF/MEK [5%]. Microsatellite instability was detected in 31/2,213 patients [1.4%]. Conclusions: In the largest study of mCRPC plasma samples conducted to date, CGP of ctDNA recapitulated the genomic landscape detected in tissue biopsies, with a high level of agreement in detection of BRCA1/2 alterations. It also identified patients who may have gained somatic BRCA1/2 alterations since archival tissue was collected. ctDNA detected more acquired resistance GAs than tissue, including novel AR-activating variants. The large percentage of patients with rich genomic signal from ctDNA, and the sensitive, specific detection of BRCA1/2 alterations position liquid biopsy as a compelling clinical complement to tissue CGP for patients with mCRPC.


Sign in / Sign up

Export Citation Format

Share Document