Normalized maximal rate of torque development during voluntary and stimulated static contraction in human tibialis anterior: Influence of age

2020 ◽  
Vol 138 ◽  
pp. 110999 ◽  
Author(s):  
M. Cogliati ◽  
A. Cudicio ◽  
F. Toscani ◽  
P. Gaffurini ◽  
L.M. Bissolotti ◽  
...  
2008 ◽  
Vol 104 (3) ◽  
pp. 739-746 ◽  
Author(s):  
Malgorzata Klass ◽  
Stéphane Baudry ◽  
Jacques Duchateau

The aim of this study was to investigate the association between the rate of torque development and maximal motor unit discharge frequency in young and elderly adults as they performed rapid submaximal contractions with the ankle dorsiflexors. Recordings were obtained of the torque exerted by the dorsiflexors during the isometric contractions and the surface and intramuscular electromyograms (EMGs) from the tibialis anterior. The maximal rate of torque development and integrated EMG (percentage of total EMG burst) at peak rate of torque development during fast contractions were lower in elderly than young adults by 48% ( P < 0.05) and 16.5% ( P < 0.05), respectively. The young adults, but not the elderly adults, exhibited a positive association ( r2 = 0.33; P < 0.01) between the integrated EMG computed up to the peak rate of torque development and the maximal rate of torque development achieved during the fast contractions. These age-related changes during fast voluntary contractions were accompanied by a decline ( P < 0.001) in motor unit discharge frequency (19, 28, and 34% for first 3 interspike intervals, respectively) and in the percentage of units (45%; P < 0.05) that exhibited double discharges (doublets) at brief intervals (<5 ms). Because aging decreased the maximal rate of torque development of fast voluntary contractions to a greater extent (∼10%) than that of an electrically evoked twitch, collectively the results indicate that the age-related decline in maximal motor unit discharge frequency likely limit, in addition to the slowing of muscle contractile properties, the performance of fast voluntary contractions.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tarak Driss ◽  
Daniel Lambertz ◽  
Majdi Rouis ◽  
Hamdi Jaafar ◽  
Henry Vandewalle

The relationships between ankle plantar flexor musculotendinous stiffness (MTS) and performance in a countermovement vertical jump (CMJ) and maximal rate of torque development (MRTD) were studied in 27 active men. MTS was studied by means of quick releases at 20 (S0.2), 40 (S0.4), 60 (S0.6), and 80% (S0.8) of maximal voluntary torque (TMVC). CMJ was not correlated with strength indices but was positively correlated with MRTD/BM,S0.4/BM. The slopeα2and interceptβ2of the torque-stiffness relationships from 40 to 80%TMVCwere correlated negatively (α2) and positively (β2) with CMJ. The different stiffness indices were not correlated with MRTD. The prediction of CMJ was improved by the introduction of MRTD in multiple regressions between CMJ and stiffness. CMJ was also negatively correlated with indices of curvature of the torque-stiffness relationship. The subjects were subdivided in 3 groups in function of CMJ (groups H, M, and L for high, medium, and low performers, resp.). There was a downward curvature of the torque-stiffness relationship at high torques in group H or M and the torque-stiffness regression was linear in group L only. These results suggested that torque-stiffness relationships with a plateau at high torques are more frequent in the best jumpers.


Author(s):  
Matheus Henrique Maiolini Ducatti ◽  
Marina Cabral Waiteman ◽  
Ana Flávia Balotari Botta ◽  
Helder dos Santos Lopes ◽  
Neal Robert Glaviano ◽  
...  

Author(s):  
Benjamin Ian Goodlich ◽  
Sean A Horan ◽  
Justin J Kavanagh

Serotonin (5-HT) is a neuromodulator that is critical for regulating the excitability of spinal motoneurons and the generation of muscle torque. However, the role of 5-HT in modulating human motor unit activity during rapid contractions has yet to be assessed. Nine healthy participants (23.7 ± 2.2 yr) ingested 8 mg of the competitive 5-HT2 antagonist cyproheptadine in a double-blinded, placebo-controlled, repeated-measures experiment. Rapid dorsiflexion contractions were performed at 30%, 50% and 70% of maximal voluntary contraction (MVC), where motor unit activity was assessed by high-density surface electromyographic decomposition. A second protocol was performed where a sustained, fatigue-inducing dorsiflexion contraction was completed prior to undertaking the same 30%, 50% and 70% MVC rapid contractions and motor unit analysis. Motor unit discharge rate (p < 0.001) and rate of torque development (RTD; p = 0.019) for the unfatigued muscle were both significantly lower for the cyproheptadine condition. Following the fatigue inducing contraction, cyproheptadine reduced motor unit discharge rate (p < 0.001) and RTD (p = 0.024), where the effects of cyproheptadine on motor unit discharge rate and RTD increased with increasing contraction intensity. Overall, these results support the viewpoint that serotonergic effects in the central nervous system occur fast enough to regulate motor unit discharge rate during rapid powerful contractions.


2017 ◽  
Vol 2017 (S4A) ◽  
pp. 29-37
Author(s):  
Ana Carolina de M A Rodrigues ◽  
Nathália Arnosti Vieira ◽  
Sergio Augusto Cunha ◽  
Sérgio Rocha Piedade

PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0119719 ◽  
Author(s):  
Baptiste Morel ◽  
David M. Rouffet ◽  
Damien Saboul ◽  
Samuel Rota ◽  
Michel Clémençon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document