Omega-3 fatty acids regulate NLRP3 inflammasome activation and prevent behavior deficits after traumatic brain injury

2017 ◽  
Vol 290 ◽  
pp. 115-122 ◽  
Author(s):  
Chao Lin ◽  
Honglu Chao ◽  
Zheng Li ◽  
Xiupeng Xu ◽  
Yinlong Liu ◽  
...  
Immunity ◽  
2013 ◽  
Vol 38 (6) ◽  
pp. 1154-1163 ◽  
Author(s):  
Yiqing Yan ◽  
Wei Jiang ◽  
Thibaud Spinetti ◽  
Aubry Tardivel ◽  
Rosa Castillo ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Merry W. Ma ◽  
Jing Wang ◽  
Krishnan M. Dhandapani ◽  
Darrell W. Brann

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. After the initial primary mechanical injury, a complex secondary injury cascade involving oxidative stress and neuroinflammation follows, which may exacerbate the injury and complicate the healing process. NADPH oxidase 2 (NOX2) is a major contributor to oxidative stress in TBI pathology, and inhibition of NOX2 is neuroprotective. The NLRP3 inflammasome can become activated in response to oxidative stress, but little is known about the role of NOX2 in regulating NLRP3 inflammasome activation following TBI. In this study, we utilized NOX2 knockout mice to study the role of NOX2 in mediating NLRP3 inflammasome expression and activation following a controlled cortical impact. Expression of NLRP3 inflammasome components NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC), as well as its downstream products cleaved caspase-1 and interleukin-1β (IL-1β), was robustly increased in the injured cerebral cortex following TBI. Deletion of NOX2 attenuated the expression, assembly, and activity of the NLRP3 inflammasome via a mechanism that was associated with TXNIP, a sensor of oxidative stress. The results support the notion that NOX2-dependent inflammasome activation contributes to TBI pathology.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Aijun Zhang ◽  
Youming Lu ◽  
Lei Yuan ◽  
Pengqi Zhang ◽  
Dongdong Zou ◽  
...  

Objective. Inactivation of NLRP3 inflammasome plays a role in reducing the permeability of endothelial cells and improving blood-brain barrier (BBB) dysfunction following traumatic brain injury (TBI). However, the mechanism controlling NLRP3 inflammasome activation remains unclear. This study is aimed at defining the role of miR-29a-5p in NLRP3 inflammasome activation and permeability of endothelial cells under TBI. Methods. The scratch injury model on brain bEnd.3 microvascular endothelial cells was used as in vitro TBI model cells. Effects of miR-29a mimics and inhibitors on TBI model cells were observed by examining their action on FITC, TEER, and protein contents of ZO-1 and occludin, and cell permeability-associated protein. Luciferase reporter assay evaluated miR-29a-5p targeting to NLRP3. ELISA examined of IL-1β and IL-18 levels. miR-29a-5p mimic was injected into TBI mouse and its effect on BBB, indicated by Evans blue (EB) staining assay and cerebral water content, and NLRP3 activation was examined. Results. miR-29a-3p and miR-29a-5p mimics decrease the concentration of FITC, and increase TEER and the protein contents of ZO-1 and occludin in TBI model cells. miR-29a-5p silencing disrupted the permeability of mouse bEnd.3 cells. miR-29a-5p targets to NLRP3 through the binding on its 3 ′ UTR and negatively regulates its expression in TBI model cells. NLRP3 inhibition and miR-29a-5p silencing together caused significantly decreased FITC concentration and increased TEER value and release of IL-1β and IL-18. miR-29a-5p mimic alleviated the BBB and cerebral water content and inactivates NLRP3 in the mouse TBI model. Conclusions. miR-29a-5p mimics protect TBI-induced increased endothelial cell permeability and BBB dysfunction via suppressing NLRP3 expression and activation.


Sign in / Sign up

Export Citation Format

Share Document