scholarly journals Increased susceptibility to Strongyloides venezuelensis infection is related to the parasite load and absence of major histocompatibility complex (MHC) class II molecules

2013 ◽  
Vol 135 (3) ◽  
pp. 580-586 ◽  
Author(s):  
Rosângela Maria Rodrigues ◽  
Cristina Ribeiro Cardoso ◽  
Ana Lúcia Ribeiro Gonçalves ◽  
Neide Maria Silva ◽  
Virgínia Massa ◽  
...  
1992 ◽  
Vol 175 (2) ◽  
pp. 613-616 ◽  
Author(s):  
W Mourad ◽  
K Mehindate ◽  
T J Schall ◽  
S R McColl

Cells in the rheumatoid synovium express high levels of major histocompatibility complex (MHC) class II molecules in vivo. We have therefore examined the ability of engagement of MHC class II molecules by the superantigen Staphylococcal enterotoxin A (SEA) to activate interleukin 6 (IL-6) and IL-8 gene expression in type B synoviocytes isolated from patients with rheumatoid arthritis. SEA had a minimal or undetectable effect on the expression of either gene in resting synoviocytes, as determined by Northern blot and specific enzyme-linked immunosorbent assay. However, induction of MHC class II molecule expression after treatment of synoviocytes with interferon gamma (IFN-gamma) enabled the cells to respond to SEA in a dose-dependent manner, resulting in an increase in both the level of steady-state mRNA for IL-6 and IL-8, and the release of these cytokines into the supernatant. IFN-gamma by itself had no effect on the expression of either cytokine. Pretreatment of the cells with the transcription inhibitor actinomycin D prevented the increase in cytokine mRNA induced by SEA, whereas cycloheximide superinduced mRNA for both cytokines after stimulation by SEA. Taken together, these results indicate that signaling through MHC class II molecules may represent a novel mechanism by which inflammatory cytokine production is regulated in type B rheumatoid synoviocytes, and potentially provides insight into the manner by which superantigens may initiate and/or propagate autoimmune diseases.


1992 ◽  
Vol 176 (1) ◽  
pp. 275-280 ◽  
Author(s):  
M A Blackman ◽  
F E Lund ◽  
S Surman ◽  
R B Corley ◽  
D L Woodland

It has been established that at least some V beta 17+ T cells interact with an endogenous superantigen encoded by the murine retrovirus, Mtv-9. To analyze the role of major histocompatibility complex (MHC) class II molecules in presenting the Mtv-9 encoded superantigen, vSAG-9 to V beta 17+ hybridomas, a panel of nine hybridomas was tested for their ability to respond to A20/2J (H-2d) and LBK (H-2a) cells which had been transfected with the vSAG-9 gene. Whereas some of the hybridomas recognized vSAG-9 exclusively in the context of H-2a, other hybridomas recognized vSAG-9 exclusively in the context of H-2d or in the context of both H-2d and H-2a. These results suggest that: (a) the class II MHC molecule plays a direct role in the recognition of retroviral superantigen by T cells, rather than serving simply as a platform for presentation; and, (b) it is likely that components of the TCR other than V beta are involved in the vSAG-9/TCR/class II interaction.


1992 ◽  
Vol 175 (4) ◽  
pp. 925-932 ◽  
Author(s):  
D A Vignali ◽  
J Moreno ◽  
D Schiller ◽  
G J Hämmerling

Exon-shuffled constructs between mouse (IA beta b) and human (DR3 beta) class II beta chains were made to study the interaction sites between CD4 and major histocompatibility complex (MHC) class II molecules, and to determine whether a species barrier is involved. The overall structure and the peptide binding groove appeared to be unaffected by the exon shuffling procedure as determined by monoclonal antibody and peptide binding assays, respectively. While purified CD4+ BALB/c T cells responded strongly in a mixed leukocyte reaction to transfectants expressing the whole IA molecule, the response to IA molecules containing a DR beta 2 domain was substantially reduced. In addition, the presence of an IA beta 2 domain in DR failed to restore the weak xenoreactivity to the whole DR molecule. Similar observations were made with murine HEL-specific, IA alpha k beta b-restricted T cell hybridomas which responded significantly stronger to the whole compared with the exon-shuffled IA molecules. The involvement of CD4 in these differential responses was confirmed by the observation that CD4 loss variants responded to both molecules comparably, and transfection of CD4 into these cells restored the parental phenotype. In contrast, CD4 loss variants transfected with human CD4 responded equally to both the whole and the exon-shuffled molecules. Taken together, these data imply the existence of a partial species barrier, and suggest that CD4 interacts with the beta 2 domain of MHC class II molecules, probably in addition to other contact sites. Models for the interaction of CD4 with MHC class II molecules are presented.


1997 ◽  
Vol 139 (6) ◽  
pp. 1433-1446 ◽  
Author(s):  
Giorgio Ferrari ◽  
Andrew M. Knight ◽  
Colin Watts ◽  
Jean Pieters

Major histocompatibility complex (MHC) class II molecules are transported to intracellular MHC class II compartments via a transient association with the invariant chain (Ii). After removal of the invariant chain, peptides can be loaded onto class II molecules, a process catalyzed by human leukocyte antigen-DM (HLA-DM) molecules. Here we show that MHC class II compartments consist of two physically and functionally distinct organelles. Newly synthesized MHC class II/Ii complexes were targeted to endocytic organelles lacking HLA-DM molecules, where Ii degradation occurred. From these organelles, class II molecules were transported to a distinct organelle containing HLA-DM, in which peptides were loaded onto class II molecules. This latter organelle was not directly accessible via fluid phase endocytosis, suggesting that it is not part of the endosomal pathway. Uptake via antigen-specific membrane immunoglobulin resulted however in small amounts of antigen in the HLA-DM positive organelles. From this peptide-loading compartment, class II–peptide complexes were transported to the plasma membrane, in part after transit through endocytic organelles. The existence of two separate compartments, one involved in Ii removal and the other functioning in HLA-DM–dependent peptide loading of class II molecules, may contribute to the efficiency of antigen presentation by the selective recruitment of peptide-receptive MHC class II molecules and HLA-DM to the same subcellular location.


1994 ◽  
Vol 179 (3) ◽  
pp. 1029-1034 ◽  
Author(s):  
J Thibodeau ◽  
N Labrecque ◽  
F Denis ◽  
B T Huber ◽  
R P Sékaly

Bacterial and retroviral superantigens (SAGs) interact with major histocompatibility complex (MHC) class II molecules and stimulate T cells upon binding to the V beta portion of the T cell receptor. Whereas both types of molecules exert similar effects on T cells, they have very different primary structures. Amino acids critical for the binding of bacterial toxins to class II molecules have been identified but little is known of the molecular interactions between class II and retroviral SAGs. To determine whether both types of superantigens interact with the same regions of MHC class II molecules, we have generated mutant HLA-DR molecules which have lost the capacity to bind three bacterial toxins (Staphylococcus aureus enterotoxin A [SEA], S. aureus enterotoxin B [SEB], and toxic shock syndrome toxin 1 [TSST-1]). Cells expressing these mutated class II molecules efficiently presented two retroviral SAGs (Mtv-9 and Mtv-7) to T cells while they were unable to present the bacterial SAGs. These results demonstrate that the binding sites for both types of SAGs can be dissociated.


1993 ◽  
Vol 178 (1) ◽  
pp. 73-85 ◽  
Author(s):  
G E Loss ◽  
C G Elias ◽  
P E Fields ◽  
R K Ribaudo ◽  
M McKisic ◽  
...  

Although reported examples of endogenous antigen (Ag) presentation by major histocompatibility complex (MHC) class II molecules have increased, the mechanisms governing this process remain poorly defined. In this communication, we describe an experimental system designed to examine the mechanisms governing class II presentation of internal Ag. Our target peptide is processed from a transmembrane protein constitutively expressed by a variety of nucleated cells (MHC class I, H-2Ld), is naturally displayed by MHC class II molecules in vivo, and is recognized by a class II-restricted, CD4+ T cell hybridoma. Our results indicate that presentation of the Ld target Ag is independent of its plasma membrane expression, may not involve endosomal proteolysis, and thus may be distinct from the classically defined class II presentation pathway. In addition, the observations that Ld presentation does not require a functional TAP-1 complex, is not blocked by invariant chain, and cannot utilize cytoplasmic forms of H-2Ld, suggest that a classical class I pathway is not involved in this presentation event. Finally, our data suggest that different cofactors participate in MHC class II presentation of exogenous and endogenous Ag, and that disparate Ag presenting cells, such as B, T, and pancreatic islet cells, may differentially express these two class II pathways of Ag presentation.


2000 ◽  
Vol 191 (6) ◽  
pp. 927-936 ◽  
Author(s):  
Kayo Inaba ◽  
Shannon Turley ◽  
Tomonori Iyoda ◽  
Fumiya Yamaide ◽  
Susumu Shimoyama ◽  
...  

During their final differentiation or maturation, dendritic cells (DCs) redistribute their major histocompatibility complex (MHC) class II products from intracellular compartments to the plasma membrane. Using cells arrested in the immature state, we now find that DCs also regulate the initial intracellular formation of immunogenic MHC class II–peptide complexes. Immature DCs internalize the protein antigen, hen egg lysozyme (HEL), into late endosomes and lysosomes rich in MHC class II molecules. There, despite extensive colocalization of HEL protein and MHC class II products, MHC class II–peptide complexes do not form unless the DCs are exposed to inflammatory mediators such as tumor necrosis factor α, CD40 ligand, or lipoplolysaccharide. The control of T cell receptor (TCR) ligand formation was observed using the C4H3 monoclonal antibody to detect MHC class II–HEL peptide complexes by flow cytometry and confocal microscopy, and with HEL-specific 3A9 transgenic T cells to detect downregulation of the TCR upon MHC–peptide encounter. Even the binding of preprocessed HEL peptide to MHC class II is blocked in immature DCs, including the formation of C4H3 epitope in MHC class II compartments, suggesting an arrest to antigen presentation at the peptide-loading step, rather than an enhanced degradation of MHC class II–peptide complexes at the cell surface, as described in previous work. Therefore, the capacity of late endosomes and lysosomes to produce MHC class II–peptide complexes can be strictly controlled during DC differentiation, helping to coordinate antigen acquisition and inflammatory stimuli with formation of TCR ligands. The increased ability of maturing DCs to load MHC class II molecules with antigenic cargo contributes to the >100-fold enhancement of the subsequent primary immune response observed when immature and mature DCs are compared as immune adjuvants in culture and in mice.


1995 ◽  
Vol 182 (2) ◽  
pp. 325-334 ◽  
Author(s):  
P J Peters ◽  
G Raposo ◽  
J J Neefjes ◽  
V Oorschot ◽  
R L Leijendekker ◽  
...  

In human B lymphoblastoid cell lines, the majority of major histocompatibility complex (MHC) class II heterodimers are located on the cell surface and in endocytic compartments, while invariant chain (Ii)-associated class II molecules represent biosynthetic intermediates which are present mostly in the endoplasmic reticulum and Golgi complex. To investigate the origin of the MHC class II-positive compartments and their relation to early endosomes, the intracellular distribution of MHC class II molecules and Ii in relation to endocytic tracers was studied in human lymphoblastoid B cells by immunoelectronmicroscopy on ultrathin cryosections. Cross-linking of surface immunoglobulins, followed by a brief period of internalization of the immune complexes, did not alter the intracellular distribution of MHC class II molecules. While early endosomes were abundantly labeled for the cross-linked immunoglobulins, < 1% of total MHC class II molecules were detectable in early endosomes. MHC class II- and Ii-positive structures associated with the trans-Golgi network can be reached by endocytosed bovine serum albumin (BSA)-gold conjugates after 30 min of internalization. Prolonged exposure to BSA-gold allowed visualization of later endocytic compartments, in which a progressive loss of Ii was observed: first the lumenal portion, and then the cytoplasmic portion of Ii escaped detection, culminating in the formation of MHC class II-positive compartments (MIIC) devoid of Ii. The loss of Ii also correlated with a transition from a multivesicular to a multilaminar, electron-dense MIIC. The intracellular compartments in which class II molecules reside (MIIC) are therefore a heterogeneous set of structures, part of the later aspects of the endocytic pathway.


1999 ◽  
Vol 67 (8) ◽  
pp. 4048-4054 ◽  
Author(s):  
Claire Forestier ◽  
Edgardo Moreno ◽  
Stéphane Méresse ◽  
Armelle Phalipon ◽  
Daniel Olive ◽  
...  

ABSTRACT Lipopolysaccharide (LPS), a major amphiphilic molecule located at the outer membrane of gram-negative bacteria, is a potent antigen known to induce specific humoral immune responses in infected mammals. LPS has been described as a polyclonal activator of B lymphocytes, triggering the secretion of antibodies directed against distinct sugar epitopes of the LPS chain. But, how LPS is handled by B cells remains to be fully understood. This task appears to be essential for a better knowledge of the anti-LPS humoral immune response. In this study, we examine the internalization of LPS and its interaction with antigen-presenting major histocompatibility complex (MHC) class II molecules in murine and human B-cell lines. By use of immunofluorescence, we observe that structurally different LPSs fromBrucella and Shigella strains accumulate in an intracellular compartment enriched in MHC class II molecules. By use of immunoprecipitation, we illustrate that only Brucella abortus LPS associates with MHC class II molecules in a haplotype-independent manner. Taken together, these results raise the possibility that B. abortus LPS may play a role in T-cell activation.


Sign in / Sign up

Export Citation Format

Share Document