The effect of the cross-sectional geometry on saturated flow boiling heat transfer in horizontal micro-scale channels

2017 ◽  
Vol 89 ◽  
pp. 98-109 ◽  
Author(s):  
Daniel Felipe Sempértegui-Tapia ◽  
Gherhardt Ribatski
Author(s):  
Soo W. Jo ◽  
S. A. Sherif ◽  
W. E. Lear

This paper addresses a multidimensional numerical simulation of the saturated flow boiling heat transfer in bubble pumps of absorption–diffusion refrigeration cycles. The bubble pump with a shape of vertical tube is subjected to a uniform heat flux from the tube outer wall surface along the entire pump length. As the bubble pump wall is heated, a nonazeotropic mixture of saturated strong ammonia/water entering into the bubble pump transforms to ammonia vapor and diluted ammonia/water mixture. The weaker ammonia/water mixture is lifted by the buoyant force created by the ammonia vapor. The present multidimensional numerical simulation was performed using the two-fluid model with the equilibrium phase change model and the standard k-ε turbulence model. The numerical model designed for the present simulation was validated through a comparative study referring to available experimental data. The present numerical model was compared with the one-dimensional model to assess its applicability for numerical simulation of the saturated flow boiling heat transfer in bubble pumps. As a result, it is seen that the present numerical model predicts the performance of ammonia/water bubble pumps more realistically than the one-dimensional model. In addition, the effects of the bubble pump's geometrical dimension and heat input on the pump performance were investigated using the present numerical approach.


Sign in / Sign up

Export Citation Format

Share Document