Experimental study on secondary droplets produced during liquid jet impingement onto a horizon solid surface

2021 ◽  
Vol 120 ◽  
pp. 110249
Author(s):  
Yi Zhan ◽  
Yusuke Kuwata ◽  
Tomio Okawa ◽  
Mitsuhiro Aoyagi ◽  
Takashi Takata
1986 ◽  
Vol 108 (3) ◽  
pp. 540-546 ◽  
Author(s):  
H. J. Carper ◽  
J. J. Saavedra ◽  
T. Suwanprateep

Results are presented from an experimental study conducted to determine the average convective heat transfer coefficient for the side of a rotating disk, with an approximately uniform surface temperature, cooled by a single liquid jet of oil impinging normal to the surface. Tests were conducted over a range of jet flow rates, jet temperatures, jet radial positions, and disk angular velocities with various combinations of three jet nozzle and disk diameters. Correlations are presented that relate the average Nusselt number to rotational Reynolds number, jet Reynolds number, jet Prandtl number, and dimensionless jet radial position.


1994 ◽  
Vol 116 (2) ◽  
pp. 338-344 ◽  
Author(s):  
Sourav K. Bhunia ◽  
John H. Lienhard

In turbulent liquid jet impingement, a spray of droplets often breaks off of the liquid layer formed on the target. This splattering of liquid alters the efficiencies of jet impingement heat transfer processes and chemical containment safety devices, and leads to problems of aerosol formation in jet impingement cleaning processes. In this paper, we present a more complete study of splattering and improved correlations that extend and supersede our previous reports on this topic. We report experimental results on the amount of splattering for jets of water, isopropanol-water solutions, and soap-water mixtures. Jets were produced by straight tube nozzles of diameter 0.8–5.8 mm, with fully developed turbulent pipe-flow upstream of the nozzle exit. These experiments cover Weber numbers between 130-31,000, Reynolds numbers between 2700-98,000, and nozzle-to-target separations of 0.2 ≤ l/d ≤ 125. Splattering of up to 75 percent of the incoming jet liquid is observed. The results show that only the Weber number and l/d affect the fraction of jet liquid splattered. The presence of surfactants does not alter the splattering. A new correlation for the onset condition for splattering is given. In addition, we establish the range of applicability of the model of Lienhard et al. (1992) and we provide a more accurate set of coefficients for their correlation.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
G. Thunivumani ◽  
Hrishikesh Gadgil

An experimental study was conducted to investigate the breakup of a liquid sheet produced by oblique impingement of a liquid jet on a plane solid surface. Experiments are carried out over a wide range of jet Weber number (80–6300) and various jet impingement angles (30 deg, 45 deg, and 60 deg) are employed to study the sheet dynamics. The breakup of a liquid sheet takes place in three modes, closed rim, open rim, and perforated sheet, depending upon the Weber number. The transitions across the modes are also influenced by the impingement angle with the transition Weber number reducing with increase in impingement angle. A modified regime map is proposed to illustrate the role of impingement angle in breakup transitions. A theoretical model based on force balance at the sheet edge is developed to predict the sheet parameters by taking the shear interaction between the sheet and the solid surface into account. The sheet shape predicted by the model fairly matches with the experimentally measured sheet shape. The breakup length and width of the sheet are measured and comparisons with the model predictions show good agreement in closed rim mode of breakup.


2017 ◽  
Vol 30 (2) ◽  
pp. 586-594 ◽  
Author(s):  
Ying Zhou ◽  
Guiping Lin ◽  
Xueqin Bu ◽  
Lizhan Bai ◽  
Dongsheng Wen

2019 ◽  
Vol 160 ◽  
pp. 114019 ◽  
Author(s):  
Medhat M. Sorour ◽  
Wael M. El-Maghlany ◽  
Mohamed A. Alnakeeb ◽  
Amgad M. Abbass

Sign in / Sign up

Export Citation Format

Share Document