Coupling mechanism of kinetic and thermal impacts of Rayleigh surface acoustic waves on the microdroplet

Author(s):  
Mubbashar Mehmood ◽  
Tariq Nawaz Chaudhary ◽  
Stephen Burnside ◽  
Umar F Khan ◽  
Richard Yongqing Fu ◽  
...  
Acoustics ◽  
2019 ◽  
Vol 1 (4) ◽  
pp. 749-762
Author(s):  
Zakharenko

This report acquaints the reader with an extra two new shear-horizontal surface acoustic waves (SH-SAWs). These new SH-SAWs can propagate along the free surface of the transversely isotropic (6 mm) magnetoelectroelastic materials. These (composite) materials can simultaneously possess the piezoelectric, piezomagnetic, and magnetoelectric effects. Some competition among these effects can lead to suitable solutions found for the following three possible coupling mechanisms: eα – hε, eµ – hα, εµ – α2. Here, the mechanically free interface between the solid and a vacuum was considered. This report discovers the twelfth (thirteenth) new SH-SAW for the magnetically closed (electrically open) case and continuity of both the normal component of the electrical (magnetic) displacement and the electrical (magnetic) potential when the coupling mechanism eα – hε (eµ – hα) works. The propagation velocities were obtained in explicit forms that take into account the contribution of the vacuum material parameters. The discovered waves were then graphically studied for the purpose of disclosing the dissipation phenomenon (the propagation velocity becomes imaginary) caused by the coupling with the vacuum properties. The obtained results can be useful for further investigations of interfacial and plate SH-waves, constitution of technical devices, nondestructive testing and evaluation, and application of some gravitational phenomena.


2020 ◽  
Vol 6 (32) ◽  
pp. eabb1724 ◽  
Author(s):  
Mingran Xu ◽  
Kei Yamamoto ◽  
Jorge Puebla ◽  
Korbinian Baumgaertl ◽  
Bivas Rana ◽  
...  

A fundamental form of magnon-phonon interaction is an intrinsic property of magnetic materials, the “magnetoelastic coupling.” This form of interaction has been the basis for describing magnetostrictive materials and their applications, where strain induces changes of internal magnetic fields. Different from the magnetoelastic coupling, more than 40 years ago, it was proposed that surface acoustic waves may induce surface magnons via rotational motion of the lattice in anisotropic magnets. However, a signature of this magnon-phonon coupling mechanism, termed magneto-rotation coupling, has been elusive. Here, we report the first observation and theoretical framework of the magneto-rotation coupling in a perpendicularly anisotropic film Ta/CoFeB(1.6 nanometers)/MgO, which consequently induces nonreciprocal acoustic wave attenuation with an unprecedented ratio of up to 100% rectification at a theoretically predicted optimized condition. Our work not only experimentally demonstrates a fundamentally new path for investigating magnon-phonon coupling but also justifies the feasibility of the magneto-rotation coupling application.


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


1998 ◽  
Vol 77 (5) ◽  
pp. 1195-1202
Author(s):  
Andreas Knabchen Yehoshua, B. Levinson, Ora

2014 ◽  
Author(s):  
Jean-Charles Beugnot ◽  
Sylvie Lebrun ◽  
Gilles Pauliat ◽  
Vincent Laude ◽  
Thibaut Sylvestre

2000 ◽  
Vol 284-288 ◽  
pp. 1732-1733
Author(s):  
Irina L Drichko ◽  
Andrey M Diakonov ◽  
Valery V Preobrazenskii ◽  
Ivan Yu Smirnov ◽  
Alexandr I Toropov

Sign in / Sign up

Export Citation Format

Share Document