Geraniin down regulates gamma radiation-induced apoptosis by suppressing DNA damage

2013 ◽  
Vol 57 ◽  
pp. 147-153 ◽  
Author(s):  
So Jin Bing ◽  
Danbee Ha ◽  
Min Ju Kim ◽  
Eunjin Park ◽  
Ginnae Ahn ◽  
...  
Head & Neck ◽  
2004 ◽  
Vol 26 (7) ◽  
pp. 612-618 ◽  
Author(s):  
Rong Zheng ◽  
Kristina R. Dahlstrom ◽  
Qingyi Wei ◽  
Erich M. Sturgis

Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2645-2650 ◽  
Author(s):  
Lisa A. Porter ◽  
Gurmit Singh ◽  
Jonathan M. Lee

Abstract γ-Radiation is a potent inducer of apoptosis. There are multiple pathways regulating DNA damage-induced apoptosis, and we set out to identify novel mechanisms regulating γ-radiation–induced apoptosis in hematopoietic cells. In this report, we present data implicating the cyclin B1 protein as a regulator of apoptotic fate following DNA damage. Cyclin B1 is the regulatory subunit of the cdc2 serine/threonine kinase, and accumulation of cyclin B1 in late G2 phase of the cell cycle is a prerequisite for mitotic initiation in mammalian cells. We find that abundance of the cyclin B1 protein rapidly increases in several mouse and human hematopoietic cells (Ramos, DP16, HL60, thymocytes) undergoing γ-radiation–induced apoptosis. Cyclin B1 accumulation occurs in all phases of the cell cycle. Antisense inhibition of cyclin B1 accumulation decreases apoptosis, and ectopic cyclin B1 expression is sufficient to induce apoptosis. These observations are consistent with the idea that cyclin B1 is both necessary and sufficient for γ-radiation-induced apoptosis.


1994 ◽  
Vol 72 (11-12) ◽  
pp. 475-482 ◽  
Author(s):  
S. P. Cregan ◽  
D. R. Boreham ◽  
P. R. Walker ◽  
D. L. Brown ◽  
R. E. J. Mitchel

We have investigated the influence of the cellular adaptive response to ionizing radiation on radiation-induced apoptosis in human cells. The adaptive response is believed to be a protective mechanism that confers resistance to the detrimental effects of ionizing radiation and that can be induced by different agents, including hyperthermia and radiation. We have used fluorescence analysis of DNA unwinding (FADU) to assay the induction of apoptosis in human peripheral blood lymphocytes by ionizing radiation. Using the FADU assay, we have observed the initial radiation-induced DNA damage, its subsequent disappearance due to enzymatic repair, and its time- and dose-dependent reappearance. We believe this reappearance of DNA damage to be indicative of the DNA fragmentation event associated with apoptosis. This interpretation has been supported at the individual cell level using an in situ terminal deoxynucleotidyl transferase (TDT) assay (Apoptag, Oncor Inc.), which detects the 3′-hydroxyl ends of fragmented DNA, and by fluorescence analysis of nuclear morphology in Hoechst 33258 stained cells. Pretreatment of cells with low-dose γ-radiation (0.1 Gy) or mild hyperthermia (40 °C for 30 min) altered the extent of radiation-induced (3 Gy) apoptosis. Both pretreatments sensitized lymphocytes to become apoptotic after the 3-Gy radiation exposure. This sensitization may represent an adaptive response mechanism that reduces the risk that genetically damaged cells will proliferate. The ability to modify the probability of radiation-induced apoptosis may lower the cancer risk from a radiation exposure.Key words: apoptosis, adaptive response, ionizing radiation, hyperthermia.


2004 ◽  
Vol 280 (7) ◽  
pp. 5795-5802 ◽  
Author(s):  
Markus Böhm ◽  
Ilka Wolff ◽  
Thomas E. Scholzen ◽  
Samantha J. Robinson ◽  
Eugene Healy ◽  
...  

2000 ◽  
Vol 460 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Gitta K Kuipers ◽  
Ben J Slotman ◽  
Hester A Poldervaart ◽  
Ingrid M.J van Vilsteren ◽  
Carola A Reitsma-Wijker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document