Suppression of dimerumic acid on hepatic fibrosis caused from carboxymethyl-lysine (CML) by attenuating oxidative stress depends on Nrf2 activation in hepatic stellate cells (HSCs)

2013 ◽  
Vol 62 ◽  
pp. 413-419 ◽  
Author(s):  
Bao-Hong Lee ◽  
Wei-Hsuan Hsu ◽  
Ya-Wen Hsu ◽  
Tzu-Ming Pan
Author(s):  
Wenzhang Dai ◽  
Qin Qin ◽  
Zhiyong Li ◽  
Li Lin ◽  
Ruisheng Li ◽  
...  

Hepatic fibrosis is the final pathway of several chronic liver diseases, which is characterized by the accumulation of extracellular matrix due to chronic hepatocyte damage. Activation of hepatic stellate cells and oxidative stress (OS) play an important role in mediating liver damage and initiating hepatic fibrosis. Hence, hepatic fibrosis can be reversed by inhibiting multiple channels such as oxidative stress, liver cell damage, or activation of hepatic stellate cells. Liuwei Wuling Tablets is a traditional Chinese medicine formula with the effect of anti- hepatic fibrosis, but the composition and mechanism of reversing hepatic fibrosis are still unclear. Our study demonstrated that one of the main active components of the Chinese medicine Schisandra chinensis, schisandrin C (Sin C), significantly inhibited oxidative stress and prevented hepatocyte injury. Meanwhile one of the main active components of the Chinese medicine Curdione inhibited hepatic stellate cell activation by targeting the TGF-β1/Smads signaling pathway. The further in vivo experiments showed that Sin C, Curdione and the combination of both have the effect of reversing liver fibrosis in mice, and the combined effect of inhibiting hepatic fibrosis is superior to treatment with Sin C or Curdione alone. Our study provides a potential candidate for multi-molecular or multi-pathway combination therapies for the treatment of hepatic fibrosis and demonstrates that combined pharmacotherapy holds great promise in the prevention and treatment of hepatic fibrosis.


2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Qing Liu ◽  
Yongming Zhang ◽  
Songzhu Yang ◽  
Yanfang Wu ◽  
Jiantao Wang ◽  
...  

PU box binding protein (PU.1) is a critical transcription factor involved in many pathological processes. However, its exact role in activation of hepatic stellate cells (HSCs) and liver fibrosis was rarely reported. Here, we found that, in HSCs of PU.1+/− mice, Sirt1 mRNA expression was not changed but Sirt1 protein was significantly increased, suggesting its promoting role in Sirt1 translation. We then isolated HSCs from wild-type (WT) and PU.1+/− mice, and the pcDNA-PU.1 expression vector was transfected into PU.1+/− HSCs. We checked the levels of miR-34a and miR-29c, two Sirt1-targetting miRNAs, and protein levels of PU.1 and Sirt1. The results showed that miR-34a/-29c were significantly reduced and Sirt1 protein was increased in PU.1+/− HSCs, compared with WT HSCs. Besides, PU.1 overexpression inversed the reduction in miR-34a/-29c levels and the increase in Sirt1 protein in both PU.1+/- HSCs and WT HSCs. Additionally, ChIP-quantitive real-time PCR (qPCR) assay comfirmed that PU.1 was directly bound to both the promoter regions of miR-34a and miR-29c. Importantly, PU.1 overexpression promoted the proliferation, migration, activation, oxidative stress and inflammatory response in WT HSCs, while the promotion could be inversed by either overexpression of Sirt1 or inhibition of miR-34a/-29c. Moreover, animal model of liver fibrosis was established by intraperitoneal injections of thioacetamide (TAA) in WT and PU.1+/− mice, respectively. Compared with the WT mice, PU.1+/− mice displayed a lower fibrotic score, less collagen content, better liver function, and lower levels of oxidative stress and inflammatory response. In conclusion, PU.1 suppresses Sirt1 translation via transcriptional promotion of miR-34a/-29c, thus promoting Sirt1-mediated HSC activation and TAA-induced hepatic fibrosis.


2020 ◽  
Vol 22 (3) ◽  
pp. 2191-2198
Author(s):  
Shu Li ◽  
Wei Zhao ◽  
Zhimin Zhao ◽  
Binbin Cheng ◽  
Shuang Li ◽  
...  

2001 ◽  
Vol 42 (1) ◽  
pp. 1 ◽  
Author(s):  
Kwan Sik Lee ◽  
Se Joon Lee ◽  
Hyo Jin Park ◽  
Jun Pyo Chung ◽  
Kwang Hyub Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document