The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching inArabidopsis thaliana

FEBS Letters ◽  
2007 ◽  
Vol 582 (2) ◽  
pp. 262-266 ◽  
Author(s):  
Matthew P. Johnson ◽  
Paul A. Davison ◽  
Alexander V. Ruban ◽  
Peter Horton
2002 ◽  
Vol 29 (10) ◽  
pp. 1141 ◽  
Author(s):  
Govindjee ◽  
Manfredo J. Seufferheld

This paper deals first with the early, although incomplete, history of photoinhibition, of 'non-QA-related chlorophyll (Chl) a fluorescence changes', and the xanthophyll cycle that preceded the discovery of the correlation between non-photochemical quenching of Chl a fluorescence (NPQ) and conversion of violaxanthin to zeaxanthin. It includes the crucial observation that the fluorescence intensity quenching, when plants are exposed to excess light, is indeed due to a change in the quantum yield of fluorescence. The history ends with a novel turn in the direction of research — isolation and characterization of NPQ xanthophyll-cycle mutants of Chlamydomonas reinhardtii Dangeard and Arabidopsis thaliana (L.) Heynh., blocked in conversion of violaxanthin to zeaxanthin, and zeaxanthin to violaxanthin, respectively. In the second part of the paper, we extend the characterization of two of these mutants (npq1, which accumulates violaxanthin, and npq2, which accumulates zeaxanthin) through parallel measurements on growth, and several assays of PSII function: oxygen evolution, Chl a fluorescence transient (the Kautsky effect), the two-electron gate function of PSII, the back reactions around PSII, and measurements of NPQ by pulse-amplitude modulation (PAM 2000) fluorimeter. We show that, in the npq2 mutant, Chl a fluorescence is quenched both in the absence and presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). However, no differences are observed in functioning of the electron-acceptor side of PSII — both the two-electron gate and the back reactions are unchanged. In addition, the role of protons in fluorescence quenching during the 'P-to-S' fluorescence transient was confirmed by the effect of nigericin in decreasing this quenching effect. Also, the absence of zeaxanthin in the npq1 mutant leads to reduced oxygen evolution at high light intensity, suggesting another protective role of this carotenoid. The available data not only support the current model of NPQ that includes roles for both pH and the xanthophylls, but also are consistent with additional protective roles of zeaxanthin. However, this paper emphasizes that we still lack sufficient understanding of the different parts of NPQ, and that the precise mechanisms of photoprotection in the alga Chlamydomonas may not be the same as those in higher plants.


2002 ◽  
Vol 29 (4) ◽  
pp. 425 ◽  
Author(s):  
Govindjee ◽  
Paul Spilotro

A major photoprotective mechanism that plants employ against excess light involves interplay between the xanthophyll cycle and the accumulation of protons. Using mutants in the xanthophyll cycle, the roles of violaxanthin, antheraxanthin and zeaxanthin have already been well established. In this paper, we present data on intact leaves of a mutant [coupling factor quick recovery mutant (cfq); atpC1:E244K] of Arabidopsis thaliana that we expected, based on 515-nm absorbance changes (Gabrys et al. 1994, Plant Physiology 104, 769–776), to have differences in light-induced ΔpH. The significance of this paper is: (i) it is the first study of the photoprotective energy dissipation involving a mutant of the pH gradient; it establishes that protons play an important role in the pattern of non-photochemical quenching (NPQ) of chlorophyll (Chl) a fluorescence; and (ii) differences between the cfq and the wild type (wt) are observed only under subsaturating light intensities, and are strongest in the initial few minutes of the induction period. Our results on light-intensity dependent Chl* a fluorescence transients (the Kautsky effect), and on NPQ of Chl a fluorescence, at 50–250 μmol photons m–2 s–1 demonstrate: (i) the ‘P-to-S’ (or ‘T’) decay, known to be related to [H+] (Briantais et al. 1979, Biochimica et Biophysica Acta 548, 128–138), is slowed in the mutant; and (ii) the pattern of NPQ kinetics is different in the initial 100 s — in the wt leaves, there is a marked rise and decline, and in the cfq mutant, there is a slowed rise. These differences are absent at 750 μmol photons m–2 s–1. Pre-illumination and nigericin (an uncoupler that dissipates the proton gradient) treatment of the cfq mutant, which has lower ΔpH relative to wild type, confirm the conclusion that protons play an important role in the quenching of Chl a fluorescence.


2000 ◽  
Vol 355 (1402) ◽  
pp. 1361-1370 ◽  
Author(s):  
Peter Horton ◽  
Alexander V. Ruban ◽  
Mark Wentworth

Non–photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light–harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid ΔpH and the de–epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme–catalysed reactions. Steady–state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonationdependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light–harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second–order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics.


Botany ◽  
2009 ◽  
Vol 87 (12) ◽  
pp. 1186-1197 ◽  
Author(s):  
Nicolas Y. Fondom ◽  
Sergio Castro-Nava ◽  
Alfredo J. Huerta

Our objectives were to test whether in Agave striata Zucc., a plant with crassulacean acid metabolism (CAM plant), leaf wax development is a delayed response to sunlight exposure following cutin development, and whether energy dissipation shifts from non-photochemical quenching to photochemical quenching during leaf ontogeny. Under field conditions, photosynthesis, cuticular development, and anthocyanin deposition were studied in two morphs of A. striata that differ in leaf coloration (green vs. red). We quantified leaf anthocyanin, wax, and cutin content, and also measured chlorophyll a fluorescence and leaf surface temperature. In addition, using three leaf reflectance indices, we measured relative chlorophyll and anthocyanin content, and also xanthophyll-cycle de-epoxidation state (xanthophyll conversion). Our results revealed that the main components of cuticle (wax and cutin) in leaves of A. striata are deposited during different developmental windows, which are similar to leaves of monocots such as grasses. Exposure to sunlight was found to be the most likely candidate to affect wax and anthocyanin deposition. Chlorophyll a fluorescence data revealed that the sunlight conditions experienced by both morphs predisposed the young leaves of the green morph and old leaves of both morphs to photoinhibition. Our results also revealed that old leaves of the red morph, which contain a reduced level of chlorophyll and anthocyanin, had additional photoprotection via xanthophyll conversion. The results presented here support the photoprotective function of leaf anthocyanins and wax accumulation during leaf ontogeny, indicating that their presence may compensate for the reduced dependence of non-photochemical quenching and the xanthophyll-cycle pigment conversion.


Sign in / Sign up

Export Citation Format

Share Document