scholarly journals Allosteric regulation of the light-harvesting system of photosystem II

2000 ◽  
Vol 355 (1402) ◽  
pp. 1361-1370 ◽  
Author(s):  
Peter Horton ◽  
Alexander V. Ruban ◽  
Mark Wentworth

Non–photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light–harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid ΔpH and the de–epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme–catalysed reactions. Steady–state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonationdependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light–harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second–order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics.

2020 ◽  
Author(s):  
Julianne M. Troiano ◽  
Federico Perozeni ◽  
Raymundo Moya ◽  
Luca Zuliani ◽  
Kwangryul Baek ◽  
...  

AbstractUnder high light conditions, oxygenic photosynthetic organisms avoid photodamage by thermally dissipating excess absorbed energy, which is called non-photochemical quenching (NPQ). In green algae, a chlorophyll and carotenoid-binding protein, light-harvesting complex stress-related (LHCSR3), detects excess energy via pH and serves as a quenching site. However, the mechanisms by which LHCSR3 functions have not been determined. Using a combined in vivo and in vitro approach, we identify two parallel yet distinct quenching processes, individually controlled by pH and carotenoid composition, and their likely molecular origin within LHCSR3 from Chlamydomonas reinhardtii. The pH-controlled quenching is removed within a mutant LHCSR3 that lacks the protonable residues responsible for sensing pH. Constitutive quenching in zeaxanthin-enriched systems demonstrates zeaxanthin-controlled quenching, which may be shared with other light-harvesting complexes. We show that both quenching processes prevent the formation of damaging reactive oxygen species, and thus provide distinct timescales and mechanisms of protection in a changing environment.


2012 ◽  
Vol 367 (1608) ◽  
pp. 3503-3514 ◽  
Author(s):  
Shizue Matsubara ◽  
Britta Förster ◽  
Melinda Waterman ◽  
Sharon A. Robinson ◽  
Barry J. Pogson ◽  
...  

Half a century of research into the physiology and biochemistry of sun–shade acclimation in diverse plants has provided reality checks for contemporary understanding of thylakoid membrane dynamics. This paper reviews recent insights into photosynthetic efficiency and photoprotection from studies of two xanthophyll cycles in old shade leaves from the inner canopy of the tropical trees Inga sapindoides and Persea americana (avocado). It then presents new physiological data from avocado on the time frames of the slow coordinated photosynthetic development of sink leaves in sunlight and on the slow renovation of photosynthetic properties in old leaves during sun to shade and shade to sun acclimation. In so doing, it grapples with issues in vivo that seem relevant to our increasingly sophisticated understanding of Δ pH-dependent, xanthophyll-pigment-stabilized non-photochemical quenching in the antenna of PSII in thylakoid membranes in vitro .


2021 ◽  
Vol 22 (6) ◽  
pp. 2969
Author(s):  
Aurélie Crepin ◽  
Edel Cunill-Semanat ◽  
Eliška Kuthanová Trsková ◽  
Erica Belgio ◽  
Radek Kaňa

Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.


2000 ◽  
Vol 355 (1402) ◽  
pp. 1405-1418 ◽  
Author(s):  
A. Laisk ◽  
V. Oja

Oxygen yield from single turnover flashes and multiple turnover pulses was measured in sunflower leaves differently pre–illuminated to induce either ‘energy–dependent type’ non–photochemical excitation quenching ( q E ) or reversible, inhibitory type non–photochemical quenching ( q I ). A zirconium O 2 analyser, combined with a flexible gas system, was used for these measurements. Oxygen yield from saturating single turnover flashes was the equivalent of 1.3–2.0 μmol e − m −2 in leaves pre–adapted to low light. It did not decrease when q E quenching was induced by a 1 min exposure to saturating light, but it decreased when pre–illumination was extended to 30–60 min. Oxygen evolution from saturating multiple turnover pulses behaved similarly: it did not decrease with the rapidly induced q E but decreased considerably when exposure to saturating light was extended or O 2 concentration was decreased to 0.4%. Parallel recording of chlorophyll fluorescence and O 2 evolution during multiple turnover pulses, interpreted with the help of a mathematical model of photosystem II (PS II) electron transport, revealed PS II donor and acceptor side resistances. These experiments showed that PS II properties depend on the type of non–photochemical quenching present. The rapidly induced and rapidly reversible q E type (photoprotective) quenching does not induce changes in the number of active PS II or in the PS II maximum turnover rate, thus confirming the antenna mechanism of q E. The more slowly induced but still reversible q I type quenching (photoinactivation) induced a decrease in the number of active PS II and in the maximum PS II turnover rate. Modelling showed that, mainly, the acceptor side resistance of PS II increased in parallel with the reversible q I. Oxygen yield from single turnover flashes and multiple turnover pulses was measured in sunflower leaves differently pre–illuminated to induce either ‘energy–dependent type’ non–photochemical excitation quenching ( q E ) or reversible, inhibitory type non–photochemical quenching ( q I ). A zirconium O 2 analyser, combined with a flexible gas system, was used for these measurements. Oxygen yield from saturating single turnover flashes was the equivalent of 1.3–2.0 μmol e − m −2 in leaves pre–adapted to low light. It did not decrease when q E quenching was induced by a 1 min exposure to saturating light, but it decreased when pre–illumination was extended to 30–60 min. Oxygen evolution from saturating multiple turnover pulses behaved similarly: it did not decrease with the rapidly induced q E but decreased considerably when exposure to saturating light was extended or O 2 concentration was decreased to 0.4%. Parallel recording of chlorophyll fluorescence and O 2 evolution during multiple turnover pulses, interpreted with the help of a mathematical model of photosystem II (PS II) electron transport, revealed PS II donor and acceptor side resistances. These experiments showed that PS II properties depend on the type of non–photochemical quenching present. The rapidly induced and rapidly reversible q E type (photoprotective) quenching does not induce changes in the number of active PS II or in the PS II maximum turnover rate, thus confirming the antenna mechanism of q E. The more slowly induced but still reversible q I type quenching (photoinactivation) induced a decrease in the number of active PS II and in the maximum PS II turnover rate. Modelling showed that, mainly, the acceptor side resistance of PS II increased in parallel with the reversible q I.


1984 ◽  
Vol 98 (1) ◽  
pp. 1-7 ◽  
Author(s):  
F A Wollman ◽  
P Delepelaire

We have used a new method to extensively modify the redox state of the plastoquinone pool in Chlamydomonas reinhardtii intact cells. This was achieved by an anaerobic treatment that inhibits the chlororespiratory pathway recently described by P. Bennoun (Proc. Natl. Acad. Sci. USA, 1982, 79:4352-4356). A state I (plus 3,4-dichlorophenyl-1,1-dimethylurea) leads to anaerobic state transition induced a decrease in the maximal fluorescence yield at room temperature and in the FPSII/FPSI ratio at 77 degrees K, which was three times larger than in a classical state I leads to state II transition. The fluorescence changes observed in vivo were similar in amplitude to those observed in vitro upon transfer to the light of dark-adapted, broken chloroplasts incubated in the presence of ATP. We then compared the phosphorylation pattern of thylakoid polypeptides in C. reinhardtii in vitro and in vivo using gamma-[32P]ATP and [32P]orthophosphate labeling, respectively. The same set of polypeptides, mainly light-harvesting complex polypeptides, was phosphorylated in both cases. We observed that this phosphorylation process is reversible and is mediated by the redox state of the plastoquinone pool in vivo as well as in vitro. Similar changes of even larger amplitude were observed with the F34 mutant intact cells lacking in photosystem II centers. The presence of the photosystem II centers is then not required for the occurrence of the plastoquinone-mediated phosphorylation of light-harvesting complex polypeptides.


2007 ◽  
Vol 34 (9) ◽  
pp. 759 ◽  
Author(s):  
Jose I. García-Plazaola ◽  
Shizue Matsubara ◽  
C. Barry Osmond

Several xanthophyll cycles have been described in photosynthetic organisms. Among them, only two are present in higher plants: the ubiquitous violaxanthin (V) cycle, and the taxonomically restricted lutein epoxide (Lx) cycle, whereas four cycles seem to occur in algae. Although V is synthesised through the β-branch of the carotenoid biosynthetic pathway and Lx is the product of the α-branch; both are co-located in the same sites of the photosynthetic pigment-protein complexes isolated from thylakoids. Both xanthophylls are also de-epoxidised upon light exposure by the same enzyme, violaxanthin de-epoxidase (VDE) leading to the formation of zeaxanthin (Z) and lutein (L) at comparable rates. In contrast with VDE, the reverse reaction presumably catalysed by zeaxanthin epoxidase (ZE), is much slower (or even inactive) with L than with antheraxanthin (A) or Z. Consequently many species lack Lx altogether, and although the presence of Lx shows an irregular taxonomical distribution in unrelated taxa, it has a high fidelity at family level. In those plants which accumulate Lx, variations in ZE activity in vivo mean that a complete Lx-cycle occurs in some (with Lx pools being restored overnight), whereas in others a truncated cycle is observed in which VDE converts Lx into L, but regeneration of Lx by ZE is extremely slow. Accumulation of Lx to high concentrations is found most commonly in old leaves in deeply shaded canopies, and the Lx cycle in these leaves is usually truncated. This seemingly anomalous situation presumably arises because ZE has a low but finite affinity for L, and because deeply shaded leaves are not often exposed to light intensities strong enough to activate VDE. Notably, both in vitro and in vivo studies have recently shown that accumulation of Lx can increase the light harvesting efficiency in the antennae of PSII. We propose a model for the truncated Lx cycle in strong light in which VDE converts Lx to L which then occupies sites L2 and V1 in the light-harvesting antenna complex of PSII (Lhcb), displacing V and Z. There is correlative evidence that this photoconverted L facilitates energy dissipation via non-photochemical quenching and thereby converts a highly efficient light harvesting system to an energy dissipating system with improved capacity to engage photoprotection. Operation of the α- and β-xanthophyll cycles with different L and Z epoxidation kinetics thus allows a combination of rapidly and slowly reversible modulation of light harvesting and photoprotection, with each cycle having distinct effects. Based on the patchy taxonomical distribution of Lx, we propose that the presence of Lx (and the Lx cycle) could be the result of a recurrent mutation in the epoxidase gene that increases its affinity for L, which is conserved whenever it confers an evolutionary advantage.


1995 ◽  
Vol 22 (2) ◽  
pp. 221 ◽  
Author(s):  
AV Ruban ◽  
P Horton

Non-photochemical quenching of chlorophyll fluorescence indicates the de-excitation of light-generated excited states in the chlorophyll associated with photosystem II (PSII). The principle process contributing to this quenching is dependent on the formation of the thylakoid proton gradient and is an important mechanism for protecting PSII from photodamage. Evidence points to the importance of the light-harvesting chlorophyll proteins as the site of dissipation of energy, and suggests that the structure and function of these proteins are regulated by protonation and the ratio of zeaxanthin to violaxanthin. The minor light-harvesting proteins may have a particularly important role as the primary sites of proton binding and because of their enrichment in xanthophyll cycle carotenoids. The dynamic nature of the light-harvesting system is an important part of the process by which plants are able to adapt to different light environments.


Sign in / Sign up

Export Citation Format

Share Document