scholarly journals REMOVAL OF EXCESSIVE TROPHECTODERM CELLS FOR PGT-A ADVERSELY IMPACTS FET OUTCOMES

2021 ◽  
Vol 116 (3) ◽  
pp. e183
Author(s):  
Mandy G. Katz-Jaffe ◽  
Laura Reed ◽  
Ann Janesch ◽  
Jennifer M. Hamm ◽  
Robin Smith ◽  
...  
Keyword(s):  
2013 ◽  
Author(s):  
Γεωργία Κόκκαλη

IntroductionOne of the most difficult aspects in assisted reproductive technology (ART) is the selection of asuitable embryo for transfer to the patient’s uterus, in order to achieve implantation anddevelopment to term. This study was based on the hypothesis that preimplantation embryosmay have different gene expression profiles that characterize their ability to implant in theuterus and develop to a healthy baby at term.The main aim of this study was to investigate molecular markers associated with developmentalcompetence and successful implantation in ART. The primary aim of the study was to developand optimize a blastocyst biopsy method, suitable for application in clinical practice. Thesecondary aim of the study was to investigate the gene expression of beta Human ChorionicGonadotropin (CGβ) in blastocysts and correlate it with their morphology. Previously to thecurrent study, blastocyst biopsy was not implemented in clinical practice and no prior researchon the existence, quantification and standardization of transcripts of CGβ has been performedin blastocysts.MethodologyThe methodology for trophectoderm cell biopsy from blastocysts was developed and optimizedprimary to be a safe technique for the embryo and secondary to ensure biopsy of a sufficientnumber of cells, in order to allow the application of multiple molecular analyses. The blastocystbiopsy method involved three steps: A., opening of a hole in the zona pellucida using lowfrequency laser, B., blastocyst culture to allow trophectoderm cells to herniate from the holeand C., trophectoderm cell dissection of the blastocyst mass by laser ablation.The methodology for the investigation of CGβ gene expression in blastocysts, included RNAisolation, cDNA synthesis, amplification and quantification of CGβ transcripts. Because CGβ isencoded by a cluster of homologous genes (CGβ1, CGβ2, CGβ3, CGβ5, CGβ7, CGβ8),methodology was designed considering the homology between them into groups (A: CGβ1,CGβ2 and B: CGβ3, CGβ5, CGβ7, CGβ8). For group A, real time polymerase chain reaction (RealTime PCR, RT-PCR) was applied and then transcripts were identified using restriction enzymedigestion. For group B, nested polymerase chain reaction (Nested-PCR) was used incombination with polymerase chain reaction temperature decreasing hybridization (Touch-downPCR). Following amplification, the products were sequenced (DNA sequencing) for theiridentification.ResultsThe biopsy technique did not appear to impact on the blastocyst’s ability to reform a blastocoelecavity and continue to grow and hatch from the zona pellucida, as it was shown followingfurther in vitro culture. No blastocyst showed signs of morphological damage at the lightmicroscopic level. Blastocyst biopsy was applied in clinical practice in two steps: A., 49 couples undergoing IVF had a biopsy in 153 blastocysts. The implantation rate per blastocysttransferred was 34.3% and lead to 23 full-term pregnancies (46.9%) with 37 babies born. B.,24 couples undergoing IVF for PGD of monogenic diseases had biopsy in 144 blastocysts. Thediagnosis success rate was 93%, the implantation rate per blastocyst transferred was 40% andlead to 11 full-term pregnancies (50%) with 15 term newborns. Then, a randomized pilot studywas conducted with the aim to evaluate and compare the diagnosis and implantation successrates between patients undergoing blastomere biopsy and blastocyst transfer and those havingtrophectoderm biopsy and blastocyst transfer for the diagnosis of monogenic diseases. Theresults showed that the diagnosis success rate was superior in the blastocyst biopsy group,while implantation and pregnancy rates were not statistically significant between the twogroups.For the study of CGβ expression profiles 45 blastocysts were donated to research, of which 39generated trophectoderm cells cDNA libraries. RT-PCR revealed the presence of CGB3, CGB5,CGB7, CGB8 transcripts in 5 blastocysts. The transcripts CGB5, CGB7, CGB8 were expressed inone hatched and one hatching blastocysts (fair morphology on day 7 post insemination) and thetranscript CGβ3 was expressed in three hatched blastocysts (excellent morphology on day 5/6post insemination). The transcript CGβ1 was identified in one only blastocyst. Four blastocystswere biopsied in order to investigate whether CGβ expression can be detected at the minimallevel of few trophectoderm cells. No transcript was found in trophectoderm cell samples orbiopsied blastocyst proper.DiscussionIn recent years, many new technologies have been introduced in clinical practice of ART.Blastocyst biopsy since its first announcement in 2005, until today, has been adopted andintegrated into the application of preimplantation genetic diagnosis (Kokkali et al., 2005). Asblastocyst biopsy has the advantage of providing adequate number of cells for multipleanalyses, it has been lately used for the PGD for monogenic diseases in combination withhistocompatibility screening (HLA matching) or PGD for monogenic diseases screening forstructural or numerical chromosomal abnormalities. Besides its clinical application, blastocystbiopsy offers great opportunities for research, such as the study for the expression ofpreimplantation genetic profiles for the identification of the single most viable blastocyst amongthe cohort developing in vitro that will enable single blastocyst transfers without a concomitantreduction in pregnancy rates.In this study, we investigated whether the β HCG may be used as a predictive marker ofdevelopmental competence for human embryos. This study showed that CGβ gene expressionwas diverse and heterogeneous between blastocysts. Further studies need to be accomplishedto investigate this further.ConclusionsBlastocyst biopsy was developed and optimized to serve as powerful tool for diagnostics ofhuman diseases or to identify diagnostic markers of competence to develop to term for humanembryos.


Development ◽  
1982 ◽  
Vol 70 (1) ◽  
pp. 133-152
Author(s):  
Susan J. Kimber ◽  
M. Azim ◽  
H. Surani ◽  
Sheila C. Barton

Whole 8-cell morulae can be aggregated with isolated inner cell masses from blastocysts. On examining semithin light microscope sections of such aggregates we found that cells of the morula changed shape and spread over the surface of the ICM, thus translocating it to the inside of the aggregate. Using single cells from 8-cell embryos in combination with single cells from other stage embryos or isolated ICMs we show that 1/8 blastomeres spread over other cells providing a suitably adhesive surface. The incidence of spreading is high with inner cells from 16-cell embryos (56 %) and 32-cell embryos (62%) and isolated inner cell masses (64%). In contrast, the incidence of spreading of 1/8 blastomeres is low over outer cells from 16-cell embryos (26%) and 32-cell embryos (13%). Blastomeres from 8-cell embryos do not spread over unfertilized 1-cell eggs, 1/2 or 1/4 cells or trophectoderm cells contaminating isolated ICMs. When 1/8 cells are aggregated in pairs they flatten on one another (equal spreading) as occurs at compaction in whole 8-cell embryos. However, if 1/8 is allowed to divide to 2/16 in culture one of the cells engulfs the other (51-62/ pairs). Based on the ideas of Holtfreter (1943) and Steinberg (1964,1978) these results are interpreted to indicate an increase in adhesiveness at the 8-cell stage as well as cytoskeletal mobilization. Following the 8-cell stage there is an increase in adhesiveness of inside cells while the outside cells decrease in adhesiveness. The difference in adhesiveness between inside and outside cells in late morulae is probably central to the divergent differentiation of (inner) ICM and (outer) trophectoderm cell populations.


2016 ◽  
Vol 62 (4) ◽  
pp. 243-248 ◽  
Author(s):  
Yan Li ◽  
Jian Xu ◽  
Can-quan Zhou ◽  
Cui-lian Zhang ◽  
Guang-lun Zhuang
Keyword(s):  

Development ◽  
1984 ◽  
Vol 84 (1) ◽  
pp. 63-90
Author(s):  
Tom P. Fleming ◽  
Paul D. Warren ◽  
Julia C. Chisholm ◽  
Martin H. Johnson

Mouse blastocysts, aged 0, 2, 6 and 12 h from the onset of cavitation, were examined by transmission (TEM) and scanning (SEM) electron microscopy. In TEM sections, trophectoderm cells (TE) differed morphologically from those of the inner cell mass (ICM) by their flattened shape, paler cytosol staining and polarized disposition of both junctional complexes (apicolateral) and intracellular secondary lysosomes (SL; basal). Throughout this period of development, cytoplasmic processes, characterized by abundant SLs, cover approximately 80 % of the juxtacoelic face of the ICM. These processes are shown to be derived from the basal surface of TE cells intermediately placed between polar and mural regions. In SEM preparations of the juxtacoelic ICM surface, revealed by ‘cracking open’ blastocysts, the processes appear as tongue-shaped, centripetally oriented structures which terminate collectively at a central area on the ICM surface. The potential of cultured ICMs to generate TE was demonstrated following their immunosurgical isolation from blastocysts aged up to 12 h post cavitation and by examining the sequence of ultrastructural changes associated with TE generation by ICMs from 2 h blastocysts. In contrast, the juxtacoelic cells of similarly aged ICMs observed in situ in ultrasections of intact embryos showed little or no evidence of totipotency expression as judged by the absence of TE characteristics. Since TE expression within presumptive ICM cells is thought to be generated by an asymmetry of cell contacts (Johnson & Ziomek, 1983), we propose that the juxtacoelic TE processes, by providing a cellular cover to the ICM, function in suppressing the expression in situ of ICM totipotency.


Sign in / Sign up

Export Citation Format

Share Document