scholarly journals Effects of membrane and flexural stiffnesses on aortic valve dynamics: identifying the mechanics of leaflet flutter in thinner biological tissues

2021 ◽  
pp. 100053
Author(s):  
Emily L. Johnson ◽  
Manoj R. Rajanna ◽  
Cheng-Hau Yang ◽  
Ming-Chen Hsu
2014 ◽  
Vol 62 (S 01) ◽  
Author(s):  
C. Schmidtke ◽  
D. Richardt ◽  
A. Karluss ◽  
H.-H. Sievers

Heart ◽  
1965 ◽  
Vol 27 (2) ◽  
pp. 286-302 ◽  
Author(s):  
E. B. Raftery

2018 ◽  
Vol 4 (1) ◽  
pp. 259-262 ◽  
Author(s):  
Finja Borowski ◽  
Michael Sämann ◽  
Sylvia Pfensig ◽  
Carolin Wüstenhagen ◽  
Robert Ott ◽  
...  

AbstractAn established therapy for aortic valve stenosis and insufficiency is the transcatheter aortic valve replacement. By means of numerical simulation the valve dynamics can be investigated to improve the valve prostheses performance. This study examines the influence of the hemodynamic properties on the valve dynamics utilizing fluidstructure interaction (FSI) compared with results of finiteelement analysis (FEA). FEA and FSI were conducted using a previously published aortic valve model combined with a new developed model of the aortic root. Boundary conditions for a physiological pressurization were based on measurements of ventricular and aortic pressure from in vitro hydrodynamic studies of a commercially available heart valve prosthesis using a pulse duplicator system. A linear elastic behavior was assumed for leaflet material properties and blood was specified as a homogeneous, Newtonian incompressible fluid. The type of fluid domain discretization can be described with an arbitrary Lagrangian-Eulerian formulation. Comparison of significant points of time and the leaflet opening area were used to investigate the valve opening behavior of both analyses. Numerical results show that total valve opening modelled by FEA is faster compared to FSI by a factor of 5. In conclusion the inertia of the fluid, which surrounds the valve leaflets, has an important influence on leaflet deformation. Therefore, fluid dynamics should not be neglected in numerical analysis of heart valve prostheses.


2015 ◽  
Vol 48 (10) ◽  
pp. 1737-1744 ◽  
Author(s):  
Govinda Balan Kalyana Sundaram ◽  
Komarakshi R. Balakrishnan ◽  
Ramarathnam Krishna Kumar

Circulation ◽  
2003 ◽  
Vol 107 (23) ◽  
pp. 2876-2879 ◽  
Author(s):  
Michael Handke ◽  
Cosima Jahnke ◽  
Gudrun Heinrichs ◽  
Jörg Schlegel ◽  
Clemens Vos ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 16-24
Author(s):  
T. V. Glushkova ◽  
A. E. Kostyunin

Highlights. The morphology and elemental composition of calcium deposits formed in the tissues of epoxytreated aortic and mitral bioprostheses do not differ from those in the mineralized matrix of stenotic human aortic valve leaflets. Despite similar elemental composition of mineral deposits in the KemCor and UniLine bioprostheses, the morphology of these calcifications differs between bioprosthetic heart valve substitutes and, apparently, is associated with the specific structure of the fibrous matrix of the biological tissues that are used for their manufacturing.Aim. To analyze the morphology and elemental composition of mineral deposits formed in epoxy-treated aortic and mitral bioprosthetic heart valves made from xenoaortic or xenopericardial material and to compare the obtained findings with the data on calcified human aortic valve.Methods. Leaflets of the mitral and aortic bioprosthetic heart valves KemCor and UniLine (NeoKor, L Russia, Kemerovo) that were explanted due to their failure, as well as leaflets of the calcified native aortic valve were evaluated. The morphology of calcifications was studied by scanning electron microscopy using an S-3400N microscope (Hitachi, Japan). The elemental composition of calcium deposits was studied by electron probe microanalysis using Hitachi S-3400N microscope with energy dispersive spectrometer Bruker XFlash 4010 (Bruker, Germany).Results. Large calcifications located at the internal layers of samples were surrounded by collagen fibers commonly with evident signs of the onset of mineralization. Calcium deposits in the native aortic valve and xenoartic bioprostheses KemCor were located mainly at the spongy layer and had a loose structure, while dense lamellar deposits were found at the leaflets of pericardial bioprostheses UniLine. The elemental composition of calcium deposits showed the presence of Ca, P, O, Mg, and Na in the mineralized regions and the presence of S in the regions of low electron density. The calcium to phosphorus ratio (Ca:P) in the calcifications of the aortic valve leaflets was 1.81 (1.79-1.84; min - 1.48; max - 2.05), whereas the Ca:P ratios in the UniLine and KemCor bioprostheses were 1.78 (1.75-1.86; min - 1.52; max - 2.03) and 1.82 (1.81-1.88; min - 1.71; max - 2.06), respectively. There were no significant differences in the Ca:P ratios between calcifications in the study groups (p>0.05).Conclusion. Calcium deposits detected in epoxy-treated bioprostheses and human aortic valve appeared to be formed under dystrophic calcification. The morphology of calcifications in bioprostheses depended on the type of biological tissue. None correlations between the morphological structure of calcifications and the implantation position were found in bioprosthetic leaflets. The elemental composition of mineral deposits was similar in all study samples.


Sign in / Sign up

Export Citation Format

Share Document