scholarly journals New Three-Dimensional Echocardiographic System Using Digital Radiofrequency Data—Visualization and Quantitative Analysis of Aortic Valve Dynamics With High Resolution

Circulation ◽  
2003 ◽  
Vol 107 (23) ◽  
pp. 2876-2879 ◽  
Author(s):  
Michael Handke ◽  
Cosima Jahnke ◽  
Gudrun Heinrichs ◽  
Jörg Schlegel ◽  
Clemens Vos ◽  
...  
2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
C Quast ◽  
S Zimmer ◽  
F Boenner ◽  
C Jacoby ◽  
I Gyamfi-Poku ◽  
...  

Abstract Background Recently, we established an experimental model of moderate aortic valve stenosis (AS) aiming to mimic human disease progression closely. Functional and structural MRI of a mouse model in experimental aortic valve stenosis has not been accomplished so far. Purpose Here, we aimed at developing comprehensive MRI approach for simultaneous assessment of changes in valvular, left ventricular and aortic morphology and function. Methods Male 12-week-old wildtype mice (C57Bl/6) were subjected to wire injury of the aortic valve to induce aortic valve stenosis. High resolution MRI at 9.4T was used to monitor subsequent functional and structural changes in the aortic valve, the ascending aorta, the left ventricle and aortic flow patterns. Results MRI permits accurate planimetry of the orifice and the thickness of the aortic valve, allows a reliable three-dimensional mapping of transvalvular aortic flow, simultaneously depicts aortic regurgitation in 3D fashion and permits assessment of left ventricular changes due to AS. In our model we observed a reduced valve orifice and an increase in valve thickness. Homogenous flow pattern under control converted to heterogenous and turbulent flow with progression of AS associated with increased aortic strain, aortic wall and left ventricular wall thickness. Conclusions In a murine model of aortic valve stenosis MRI is capable to reliably display a three-dimensional transvalvular aortic flow profile with concomitant quantification of structural and functional changes in aortic valve, left ventricle, and ascending aorta. This comprehensive functional imaging at high resolution and distinct reproducibility offers for the first time serial assessment of disease progression in an experimental model of aortic valve stenosis.


2005 ◽  
Vol 4 (5) ◽  
pp. 618-625 ◽  
Author(s):  
Hong Wang ◽  
Shawn G. Clouthier ◽  
Vladimir Galchev ◽  
David E. Misek ◽  
Ulrich Duffner ◽  
...  

Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
Hirano T. ◽  
M. Yamaguchi ◽  
M. Hayashi ◽  
Y. Sekiguchi ◽  
A. Tanaka

A plasma polymerization film replica method is a new high resolution replica technique devised by Tanaka et al. in 1978. It has been developed for investigation of the three dimensional ultrastructure in biological or nonbiological specimens with the transmission electron microscope. This method is based on direct observation of the single-stage replica film, which was obtained by directly coating on the specimen surface. A plasma polymerization film was deposited by gaseous hydrocarbon monomer in a glow discharge.The present study further developed the freeze fracture method by means of a plasma polymerization film produces a three dimensional replica of chemically untreated cells and provides a clear evidence of fine structure of the yeast plasma membrane, especially the dynamic aspect of the structure of invagination (Figure 1).


Author(s):  
Tong Wensheng ◽  
Lu Lianhuang ◽  
Zhang Zhijun

This is a combined study of two diffirent branches, photogrammetry and morphology of blood cells. The three dimensional quantitative analysis of erythrocytes using SEMP technique, electron computation technique and photogrammetry theory has made it possible to push the study of mophology of blood cells from LM, TEM, SEM to a higher stage, that of SEM P. A new path has been broken for deeply study of morphology of blood cells.In medical view, the abnormality of the quality and quantity of erythrocytes is one of the important changes of blood disease. It shows the abnormal blood—making function of the human body. Therefore, the study of the change of shape on erythrocytes is the indispensable and important basis of reference in the clinical diagnosis and research of blood disease.The erythrocytes of one normal person, three PNH Patients and one AA patient were used in this experiment. This research determines the following items: Height;Length of two axes (long and short), ratio; Crevice in depth and width of cell membrane; Circumference of erythrocytes; Isoline map of erythrocytes; Section map of erythrocytes.


Sign in / Sign up

Export Citation Format

Share Document