scholarly journals A 3D physical model to study the behavior of vegetation fires at laboratory scale

2018 ◽  
Vol 101 ◽  
pp. 39-52 ◽  
Author(s):  
Dominique Morvan ◽  
Gilbert Accary ◽  
Sofiane Meradji ◽  
Nicolas Frangieh ◽  
Oleg Bessonov
2009 ◽  
Vol 18 (7) ◽  
pp. 875 ◽  
Author(s):  
P. Boulet ◽  
G. Parent ◽  
A. Collin ◽  
Z. Acem ◽  
B. Porterie ◽  
...  

Outdoor experiments were conducted on a laboratory scale to study the infrared radiation emission of vegetation flames. Measurements were made in the spectral range 1000–4500 cm–1, using a compact and portable Fourier-transform infrared spectrometer including an HgCdTe/InSb dual detector. Flame emission was compared with the reference signal emitted by a blackbody surface at 1000 K. We carried out two different series of fire experiments: a series of fires in a 0.45 m-diameter steel tray and a series of wind-tunnel fires. Various types of wildland fuels were used: wood wool, vine branches, dry wood, and Kermes oak branches. From a qualitative observation of emission spectra, it appears that the main contribution comes from the hot gaseous combustion products, with a low-intensity background radiation from soot, as the small-scale flames in these experiments were optically thin. It was also found that, in the flaming combustion zone of the fuel bed, both phases contribute to infrared emission. Our results, in combination with existing data on the absorptivity of vegetation, give a better understanding of radiative transfer in vegetation fires and show how total radiative properties could be deduced from spectral measurements. We believe that this preliminary study provides pilot data for future studies in this area.


Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


Author(s):  
E. M. Solovyov ◽  
V. I. Novikov ◽  
B. V. Spitsyn ◽  
M. R. Kiselev ◽  
V. A. Sorokin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document