scholarly journals Two-phase flow metering of heavy oil using a Coriolis mass flow meter: A case study

2006 ◽  
Vol 17 (6) ◽  
pp. 399-413 ◽  
Author(s):  
Manus Henry ◽  
Michael Tombs ◽  
Mihaela Duta ◽  
Feibiao Zhou ◽  
Ronaldo Mercado ◽  
...  
Author(s):  
Nan Liang ◽  
Changqing Tian ◽  
Shuangquan Shao

As one kind of fluid machinery related to the two-phase flow, the refrigeration system encounters more problems of instability. It is essential to ensure the stability of the refrigeration systems for the operation and efficiency. This paper presents the experimental investigation on the static and dynamic instability in an evaporator of refrigeration system. The static instability experiments showed that the oscillatory period and swing of the mixture-vapor transition point by observation with a camera through the transparent quartz glass tube at the outlet of the evaporator. The pressure drop versus mass flow rate curves of refrigerant two phase flow in the evaporator were obtained with a negative slope region in addition to two positive slope regions, thus making the flow rate a multi-valued function of the pressure drop. For dynamic instabilities in the evaporation process, three types of oscillations (density wave type, pressure drop type and thermal type) were observed at different mass flow rates and heat fluxes, which can be represented in the pressure drop versus mass flow rate curves. For the dynamic instabilities, density wave oscillations happen when the heat flux is high with the constant mass flow rate. Thermal oscillations happen when the heat flux is correspondingly low with constant mass flow rate. Though the refrigeration system do not have special tank, the accumulator and receiver provide enough compressible volume to induce the pressure drop oscillations. The representation and characteristic of each oscillation type were also analyzed in the paper.


1983 ◽  
Vol 105 (4) ◽  
pp. 394-399 ◽  
Author(s):  
H. Pascal

The effect of solution gas on the two-phase flow behavior through an orifice plate and a convergent-divergent nozzle has been investigated with regard to the flow metering of compressible two-phase mixtures. A proper thermodynamics approach to consider more accurately the compressibility effect in an accelerated two-phase flow, in particular that through an orifice and Laval’s nozzle in the presence of the solution gas, has been developed. From this approach an equation of state of mixture was derived and used in determining the orifice equation. An analysis of flow behavior has been performed and several illustrative plots were presented in order to evaluate the gas solubility effect in the flow metering with an orifice plate or a convergent-divergent nozzle. A delimitation between critical and noncritical flow has been established in terms of measured parameters and a relationship between the critical pressure and gas-liquid mass ratio was also shown.


Sign in / Sign up

Export Citation Format

Share Document