Compressibility Effect in Two-Phase Flow and Its Application to Flow Metering With Orifice Plate and Convergent-Divergent Nozzle

1983 ◽  
Vol 105 (4) ◽  
pp. 394-399 ◽  
Author(s):  
H. Pascal

The effect of solution gas on the two-phase flow behavior through an orifice plate and a convergent-divergent nozzle has been investigated with regard to the flow metering of compressible two-phase mixtures. A proper thermodynamics approach to consider more accurately the compressibility effect in an accelerated two-phase flow, in particular that through an orifice and Laval’s nozzle in the presence of the solution gas, has been developed. From this approach an equation of state of mixture was derived and used in determining the orifice equation. An analysis of flow behavior has been performed and several illustrative plots were presented in order to evaluate the gas solubility effect in the flow metering with an orifice plate or a convergent-divergent nozzle. A delimitation between critical and noncritical flow has been established in terms of measured parameters and a relationship between the critical pressure and gas-liquid mass ratio was also shown.

Author(s):  
Ammar Zeghloul ◽  
Abdelwahid Azzi ◽  
Abbas Hasan ◽  
Barry James Azzopardi

Experimental results on hydrodynamic behavior and pressure drop of two-phase mixture flowing upwardly in a pipe containing single- and/or multi-hole orifice plate are presented. It was found from the measurement of the void fraction upstream and downstream the orifices that the flow behavior is significantly affected by the layout of the orifice plate used and the flow starts to recover after approximately 7 D downstream the orifice. Furthermore, increasing orifice holes number results in decreasing the slip ratio. The standard deviation of the void fraction was used to identify the flow pattern before and after the orifices and found that the critical threshold transition occurred at a standard deviation of 0.2. The flow homogenization necessitates a minimum value of the liquid superficial velocity to occur, and the position where it takes place depends on this velocity and on the orifice holes number. It was also inferred from the two-phase pressure drop data across the orifices that three different flow regimes, where the transition between bubbly-to-slug and slug-to-churn flow, can be identified. An assessment of the predicted two-phase flow multiplier using some previous models dedicated to single-hole orifice was achieved; and found that the model proposed by Simpson et al. is the most reliable one. Single-phase pressure drop was also measured and compared with correlations from literature.


1992 ◽  
Vol 114 (1) ◽  
pp. 14-30 ◽  
Author(s):  
E. F. Caetano ◽  
O. Shoham ◽  
J. P. Brill

Mechanistic models have been developed for each of the existing two-phase flow patterns in an annulus, namely bubble flow, dispersed bubble flow, slug flow, and annular flow. These models are based on two-phase flow physical phenomena and incorporate annulus characteristics such as casing and tubing diameters and degree of eccentricity. The models also apply the new predictive means for friction factor and Taylor bubble rise velocity presented in Part I. Given a set of flow conditions, the existing flow pattern in the system can be predicted. The developed models are applied next for predicting the flow behavior, including the average volumetric liquid holdup and the average total pressure gradient for the existing flow pattern. In general, good agreement was observed between the experimental data and model predictions.


2004 ◽  
Vol 2004.57 (0) ◽  
pp. 125-126
Author(s):  
Goki AKIYOSHI ◽  
Mohammad Ariful ISLAM ◽  
Akio MIYARA ◽  
Takahisa KUROKAWA

1986 ◽  
Vol 108 (3) ◽  
pp. 207-210 ◽  
Author(s):  
H. Furukawa ◽  
O. Shoham ◽  
J. P. Brill

A computational algorithm for predicting pressure and temperature profiles for compositional two-phase flow in pipelines has been developed. The algorithm is based on the coupling of the momentum and energy balance equations and the phase behavior of the flowing fluids. Mass transfer between the gas and the liquid phases is treated rigorously through flash calculations, making the algorithm capable of handling retrograde condensation. Temperatures can be predicted by applying the enthalpy balance equation iteratively. However, it was found that the explicit Coutler and Bardon analytical solution for the temperature profile yields nearly identical results for horizontal and near horizontal flow.


Author(s):  
Ruwan K. Ratnayake ◽  
L. E. Hochreiter ◽  
K. N. Ivanov ◽  
J. M. Cimbala

Performance of best estimate codes used in the nuclear industry can be significantly improved by reducing the empiricism embedded in their constitutive models. Spacer grids have been found to have an important impact on the maximum allowable Critical Heat Flux within the fuel assembly of a nuclear reactor core. Therefore, incorporation of suitable spacer grids models can improve the critical heat flux prediction capability of best estimate codes. Realistic modeling of entrainment behavior of spacer grids requires understanding the different mechanisms that are involved. Since visual information pertaining to the entrainment behavior of spacer grids cannot possibly be obtained from operating nuclear reactors, experiments have to be designed and conducted for this specific purpose. Most of the spacer grid experiments available in literature have been designed in view of obtaining quantitative data for the purpose of developing or modifying empirical formulations for heat transfer, critical heat flux or pressure drop. Very few experiments have been designed to provide fundamental information which can be used to understand spacer grid effects and phenomena involved in two phase flow. Air-water experiments were conducted to obtain visual information on the two-phase flow behavior both upstream and downstream of Boiling Water Reactor (BWR) spacer grids. The test section was designed and constructed using prototypic dimensions such as the channel cross-section, rod diameter and other spacer grid configurations of a typical BWR fuel assembly. The test section models the flow behavior in two adjacent sub channels in the BWR core. A portion of a prototypic BWR spacer grid accounting for two adjacent channels was used with industrial mild steel rods for the purpose of representing the channel internals. Symmetry was preserved in this practice, so that the channel walls could effectively be considered as the channel boundaries. Thin films were established on the rod surfaces by injecting water through a set of perforations at the bottom ends of the rods, ensuring that the flow upstream of the bottom-most spacer grid is predominantly annular. The flow conditions were regulated such that they represent typical BWR operating conditions. Photographs taken during experiments show that the film entrainment increases significantly at the spacer grids, since the points of contact between the rods and the grids result in a peeling off of large portions of the liquid film from the rod surfaces. Decreasing the water flow resulted in eventual drying out, beginning at positions immediately upstream of the spacer grids.


Sign in / Sign up

Export Citation Format

Share Document