Independent component analysis of interface fluctuation of gas/liquid two-phase flows — experimental study

2009 ◽  
Vol 20 (6) ◽  
pp. 220-229 ◽  
Author(s):  
Yanbin Xu ◽  
Ziqiang Cui ◽  
Huaxiang Wang ◽  
Feng Dong ◽  
Xiaoyan Chen ◽  
...  
2015 ◽  
Vol 73 (3) ◽  
Author(s):  
Mohd Taufiq Mohd Khairi ◽  
Sallehuddin Ibrahim ◽  
Mohd Amri Md Yunus ◽  
Mahdi Faramarzia ◽  
Nor Muzakkir Nor Ayub

This paper presents the monitoring process of gas bubbles flow in water using an optical tomography system. The system is aided by an Independent Component Analysis (ICA) algorithm for distinguishing the gas bubbles in pure water. The optical attenuation model is implemented for studying the light transmissions to different media which is water and air. Several quantities of air are inserted using an air pump which is installed at the bottom of a flow pipe in order to produce the gas bubbles flow upwards. The quantity of air is controlled by using a valve and five types of bubble flow are investigated; a single bubble flow, double bubble’s flow, 25% of air opening, 50% of air opening and 100% of air opening. The concentration profiles of the gas bubble flow are constructed. The concentration profile obtained from the experiments shows that the ICA algorithm can be used as a tool for imaging the two-phase flow phase distribution.     


2012 ◽  
Vol 249-250 ◽  
pp. 153-158
Author(s):  
Ying Wang Xiao ◽  
Ying Du

A combination method of kernel principal component analysis (KPCA) and independent component analysis (ICA) for process monitoring is proposed. The new method is a two-phase algorithm: whitened KPCA plus ICA. KPCA spheres data and makes the data structure become as linearly separable as possible by virtue of an implicit nonlinear mapping determined by kernel. ICA seeks the projection directions in the KPCA whitened space, making the distribution of the projected data as non-gaussian as possible. The application to the Tennessee Eastman (TE) simulated process indicates that the proposed process monitoring method can effectively capture the nonlinear relationship in process variables. Its performance significantly outperforms monitoring method based on ICA or KPCA.


2020 ◽  
Vol 2020 (14) ◽  
pp. 357-1-357-6
Author(s):  
Luisa F. Polanía ◽  
Raja Bala ◽  
Ankur Purwar ◽  
Paul Matts ◽  
Martin Maltz

Human skin is made up of two primary chromophores: melanin, the pigment in the epidermis giving skin its color; and hemoglobin, the pigment in the red blood cells of the vascular network within the dermis. The relative concentrations of these chromophores provide a vital indicator for skin health and appearance. We present a technique to automatically estimate chromophore maps from RGB images of human faces captured with mobile devices such as smartphones. The ultimate goal is to provide a diagnostic aid for individuals to monitor and improve the quality of their facial skin. A previous method approaches the problem as one of blind source separation, and applies Independent Component Analysis (ICA) in camera RGB space to estimate the chromophores. We extend this technique in two important ways. First we observe that models for light transport in skin call for source separation to be performed in log spectral reflectance coordinates rather than in RGB. Thus we transform camera RGB to a spectral reflectance space prior to applying ICA. This process involves the use of a linear camera model and Principal Component Analysis to represent skin spectral reflectance as a lowdimensional manifold. The camera model requires knowledge of the incident illuminant, which we obtain via a novel technique that uses the human lip as a calibration object. Second, we address an inherent limitation with ICA that the ordering of the separated signals is random and ambiguous. We incorporate a domain-specific prior model for human chromophore spectra as a constraint in solving ICA. Results on a dataset of mobile camera images show high quality and unambiguous recovery of chromophores.


Sign in / Sign up

Export Citation Format

Share Document