Phase behaviour in the vicinity of the three-phase solid–liquid–vapour line in asymmetric nonpolar systems at high pressures

2006 ◽  
Vol 240 (1) ◽  
pp. 29-39 ◽  
Author(s):  
J. Gregorowicz
2017 ◽  
Vol 19 (11) ◽  
pp. 7708-7713 ◽  
Author(s):  
Christian Totland ◽  
Anne Marit Blokhus

Mixtures of surfactants and medium-chained alcohols display an anomalous phase behaviour, with the formation of swollen micelles in mid-range surfactant concentrations. Such alcohols also affect the aggregation and adsorption behaviour of surfactants at solid–liquid interfaces.


2018 ◽  
Vol 178 ◽  
pp. 222-237 ◽  
Author(s):  
Carlos L. Bassani ◽  
Fausto A.A. Barbuto ◽  
Amadeu K. Sum ◽  
Rigoberto E.M. Morales

2000 ◽  
Author(s):  
M. Xiong ◽  
A. V. Kuznetsov

Abstract The microporosity formation in a vertical unidirectionally solidifying Al-4.1%Cu alloy casting is modeled in both microgravity and standard gravity as well as in the conditions of decreased (Moon, Mars) and increased (Jupiter) gravity. Due to the unique opportunities offered by a low-gravity environment (absence of metallostatic pressure and of natural convection in the solidifying alloy) future microgravity experiments will significantly contribute to attaining a better physical understanding of the mechanisms of microporosity formation. One of the aims of the present theoretical investigation is to predict what microporosity patterns will look like in microgravity in order to help plan a future microgravity experiment. To perform these simulations, the authors suggest a novel three-phase model of solidification that accounts for the solid, liquid, and gas phases in the mushy zone. This model accounts for heat transfer, fluid flow, macrosegregation, and microporosity formation in the solidifying alloy. Special attention is given to the investigation of the influence of microporosity formation on the inverse segregation. Parametric analyses for different initial hydrogen concentrations and different gravity conditions are carried out.


Sign in / Sign up

Export Citation Format

Share Document