Effect οf οxygen availability and pH οn adaptive acid tolerance response of immobilized Listeria monocytogenes in structured growth media

2021 ◽  
Vol 99 ◽  
pp. 103826
Author(s):  
Ifigeneia P. Makariti ◽  
Nikos C. Grivokostopoulos ◽  
Panagiotis N. Skandamis
2003 ◽  
Vol 69 (7) ◽  
pp. 3945-3951 ◽  
Author(s):  
E. J. Greenacre ◽  
T. F. Brocklehurst ◽  
C. R. Waspe ◽  
D. R. Wilson ◽  
P. D. G. Wilson

ABSTRACT An acid tolerance response (ATR) has been demonstrated in Listeria monocytogenes and Salmonella enterica serovar Typhimurium in response to low pH poised (i.e., adapted) with acetic or lactic acids at 20°C and modeled by using dynamic differential equations. The ATR was not immediate or prolonged, and optimization occurred after exposure of L. monocytogenes for 3 h at pH 5.5 poised with acetic acid and for 2 h at pH 5.5 poised with lactic acid and after exposure of S. enterica serovar Typhimurium for 2 h at pH 5.5 poised with acetic acid and for 3 h at pH 5.5 poised with lactic acid. An objective mechanistic analysis of the acid inactivation data yielded estimates of the duration of the shoulder (t s ), the log-linear decline (k max), and the magnitude of a critical component (C). The magnitude of k max gave the best agreement with estimates of conditions for optimum ATR induction made from the raw data.


2001 ◽  
Vol 67 (6) ◽  
pp. 2410-2420 ◽  
Author(s):  
John Samelis ◽  
John N. Sofos ◽  
Patricia A. Kendall ◽  
Gary C. Smith

ABSTRACT Depending on its composition and metabolic activity, the natural flora that may be established in a meat plant environment can affect the survival, growth, and acid tolerance response (ATR) of bacterial pathogens present in the same niche. To investigate this hypothesis, changes in populations and ATR of inoculated (105 CFU/ml)Listeria monocytogenes were evaluated at 35°C in water (10 or 85°C) or acidic (2% lactic or acetic acid) washings of beef with or without prior filter sterilization. The model experiments were performed at 35°C rather than lower (≤15°C) temperatures to maximize the response of inoculated L. monocytogenes in the washings with or without competitive flora. Acid solution washings were free (<1.0 log CFU/ml) of natural flora before inoculation (day 0), and no microbial growth occurred during storage (35°C, 8 days). Inoculated L. monocytogenes died off (negative enrichment) in acid washings within 24 h. In nonacid (water) washings, the pathogen increased (approximately 1.0 to 2.0 log CFU/ml), irrespective of natural flora, which, when present, predominated (>8.0 log CFU/ml) by day 1. The pH of inoculated water washings decreased or increased depending on absence or presence of natural flora, respectively. These microbial and pH changes modulated the ATR of L. monocytogenes at 35°C. In filter-sterilized water washings, inoculated L. monocytogenes increased its ATR by at least 1.0 log CFU/ml from days 1 to 8, while in unfiltered water washings the pathogen was acid tolerant at day 1 (0.3 to 1.4 log CFU/ml reduction) and became acid sensitive (3.0 to >5.0 log CFU/ml reduction) at day 8. These results suggest that the predominant gram-negative flora of an aerobic fresh meat plant environment may sensitize bacterial pathogens to acid.


1996 ◽  
Vol 59 (9) ◽  
pp. 1003-1006 ◽  
Author(s):  
AMECHI OKEREKE ◽  
STERLING S. THOMPSON

The presence of an inducible acid-tolerance response (ATR) in Listeria monocytogenes Scott A was established. Protection of cells with induced ATR against nisin-mediated inhibition and stress was also evaluated. ATR was induced in L. monocytogenes Scott A by culturing in brain heart infusion (BHI) broth buffered to pH 5.4. The unadapted cells were grown at pH 7.2. Both acid-adapted and unadapted cells were challenged at pH 3.3 and 4.3 at 35°C. The acid-adapted cells were 150- to 7,500-fold more resistant to acid stress at pH 3.3 than unadapted cells. Both cells were equally resistant to acid stress at pH 4.3. The acid-adapted and unadapted cells were exposed to 0, 0.3, 0.6, 1.2 and 1.5 μg of nisin per ml of buffered BHI broth at pH 6.0 for 90 min at 35°C. Cells with the induced acid-resistance trait were slightly more resistant to nisin than the unadapted cells. In the presence of 1.5 μg of nisin per ml, 47% of the acid-adapted cells survived compared to 41% of the unadapted cells. In the range of nisin concentration included in this study, there was no significant (P &lt; 0.05) difference in the nisin resistance of adapted and unadapted cells. The data suggest that ATR induction confers very limited cross protection against nisin stress and kill.


Sign in / Sign up

Export Citation Format

Share Document