Antifungal activity of volatile organic compounds produced by Pseudomonas fluorescens ZX and potential biocontrol of blue mold decay on postharvest citrus

Food Control ◽  
2021 ◽  
Vol 120 ◽  
pp. 107499
Author(s):  
Zhirong Wang ◽  
Tao Zhong ◽  
Kewei Chen ◽  
Muying Du ◽  
Guangjing Chen ◽  
...  
2015 ◽  
Vol 81 ◽  
pp. 83-92 ◽  
Author(s):  
Rocío Hernández-León ◽  
Daniel Rojas-Solís ◽  
Miguel Contreras-Pérez ◽  
Ma. del Carmen Orozco-Mosqueda ◽  
Lourdes I. Macías-Rodríguez ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11242
Author(s):  
Sarunpron Khruengsai ◽  
Patcharee Pripdeevech ◽  
Chutima Tanapichatsakul ◽  
Chanin Srisuwannapa ◽  
Priya Esilda D’Souza ◽  
...  

Fungal endophytes are microorganisms living symbiotically with a host plant. They can produce volatile organic compounds (VOCs) that have antimicrobial activity. This study aimed to isolate endophytic fungi from Barleria prionitis plants grown in Thailand and to investigate the antifungal properties of their VOCs against Colletotrichum acutatum, a causal agent of anthracnose disease on post-harvest strawberry fruits. A total of 34 endophytic fungi were isolated from leaves of B. prionitis. The VOCs produced from each individual isolate were screened for their antifungal activity against C. acutatum using a dual-culture plate method. From this in vitro screening experiment, the VOCs produced by the endophytic isolate BP11 were found to have the highest inhibition percentage (80.3%) against the mycelial growth of C. acutatum. The endophytic isolate BP11 was molecularly identified as Daldinia eschscholtzii MFLUCC 19-0493. This strain was then selected for an in vivo experiment. Results from the in vivo experiment indicated that the VOCs produced by D. eschscholtzii MFLUCC 19-0493 were able to inhibit infections by C. acutatum on organic fresh strawberry fruits with an average inhibition percentage of 72.4%. The quality of the pathogen-inoculated strawberry fruits treated with VOCs produced by D. eschscholtzii MFLUCC 19-0493 was evaluated. Their fruit firmness, total soluble solids, and pH were found to be similar to the untreated strawberry fruits. Solid phase microextraction-gas chromatographic-mass spectrometric analysis of the VOCs produced by D. eschscholtzii MFLUCC 19-0493 led to the detection and identification of 60 compounds. The major compounds were elemicin (23.8%), benzaldehyde dimethyl acetal (8.5%), ethyl sorbate (6.8%), methyl geranate (6.5%), trans-sabinene hydrate (5.4%), and 3,5-dimethyl-4-heptanone (5.1%). Each major compound was tested for its antifungal activity against C. acutatum using the in vitro assay. While all these selected VOCs showed varying degrees of antifungal activity, elemicin was found to possess the strongest antifungal activity. This work suggests that D. eschscholtzii MFLUCC 19-0493 could be a promising natural preservative for controlling C. acutatum associated anthracnose disease in strawberry fruits during the post-harvest period.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3765
Author(s):  
Jian-Hua Chen ◽  
Wei Xiang ◽  
Ke-Xin Cao ◽  
Xuan Lu ◽  
Shao-Chang Yao ◽  
...  

The use of antagonistic microorganisms and their volatile organic compounds (VOCs) to control plant fungal pathogens is an eco-friendly and promising substitute for chemical fungicides. In this work, endophytic bacterium ETR-B22, isolated from the root of Sophora tonkinensis Gagnep., was found to exhibit strong antagonistic activity against 12 fungal pathogens found in agriculture. Strain ETR-B22 was identified as Burkholderia cenocepacia based on 16S rRNA and recA sequences. We evaluated the antifungal activity of VOCs emitted by ETR-B22. The VOCs from strain ETR-B22 also showed broad-spectrum antifungal activity against 12 fungal pathogens. The composition of the volatile profiles was analyzed based on headspace solid phase microextraction (HS-SPME) gas chromatography coupled to mass spectrometry (GC-MS). Different extraction strategies for the SPME process significantly affected the extraction efficiency of the VOCs. Thirty-two different VOCs were identified. Among the VOC of ETR-B22, dimethyl trisulfide, indole, methyl anthranilate, methyl salicylate, methyl benzoate, benzyl propionate, benzyl acetate, 3,5-di-tert-butylphenol, allyl benzyl ether and nonanoic acid showed broad-spectrum antifungal activity, and are key inhibitory compounds produced by strain ETR-B22 against various fungal pathogens. Our results suggest that the endophytic strain ETR-B22 and its VOCs have high potential for use as biological controls of plant fungal pathogens.


2013 ◽  
Vol 341 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Changlu Wang ◽  
Zhifang Wang ◽  
Xi Qiao ◽  
Zhenjing Li ◽  
Fengjuan Li ◽  
...  

2015 ◽  
Vol 461 (2) ◽  
pp. 361-365 ◽  
Author(s):  
Yong-Soon Park ◽  
Swarnalee Dutta ◽  
Mina Ann ◽  
Jos M. Raaijmakers ◽  
Kyungseok Park

2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Toral ◽  
Miguel Rodríguez ◽  
Fernando Martínez-Checa ◽  
Alfredo Montaño ◽  
Amparo Cortés-Delgado ◽  
...  

Phytopathogenic fungal growth in postharvest fruits and vegetables is responsible for 20–25% of production losses. Volatile organic compounds (VOCs) have been gaining importance in the food industry as a safe and ecofriendly alternative to pesticides for combating these phytopathogenic fungi. In this study, we analysed the ability of some VOCs produced by strains of the genera Bacillus, Peribacillus, Pseudomonas, Psychrobacillus and Staphylococcus to inhibit the growth of Alternaria alternata, Botrytis cinerea, Fusarium oxysporum, Fusarium solani, Monilinia fructicola, Monilinia laxa and Sclerotinia sclerotiorum, in vitro and in vivo. We analysed bacterial VOCs by using GC/MS and 87 volatile compounds were identified, in particular acetoin, acetic acid, 2,3-butanediol, isopentanol, dimethyl disulphide and isopentyl isobutanoate. In vitro growth inhibition assays and in vivo experiments using cherry fruits showed that the best producers of VOCs, Bacillus atrophaeus L193, Bacillus velezensis XT1 and Psychrobacillus vulpis Z8, exhibited the highest antifungal activity against B. cinerea, M. fructicola and M. laxa, which highlights the potential of these strains to control postharvest diseases. Transmission electron microscopy micrographs of bacterial VOC-treated fungi clearly showed antifungal activity which led to an intense degeneration of cellular components of mycelium and cell death.


Sign in / Sign up

Export Citation Format

Share Document