Kinetic modeling of microbial degradation and antioxidant reduction in lychee juice subjected to UV radiation and shelf life during cold storage

Food Control ◽  
2020 ◽  
pp. 107770
Author(s):  
Sumeth Visuthiwan ◽  
Kitipong Assatarakul
2019 ◽  
Vol 8 (1) ◽  
pp. 138
Author(s):  
Chyntia Wulandari Eka Saputri ◽  
I. A. Rina Pratiwi Pudja ◽  
Pande Ketut Diah Kencana

Tujuan dari penelitian ini adalah untuk menentukan waktu perlakuan optimal dan suhu penyimpanan dingin untuk mutu kubis bunga. Penelitian ini menggunakan rancangan acak lengkap (RAL) yang terdiri dari dua faktor, faktor pertama adalah suhu yang digunakan dan faktor kedua adalah waktu selama show case. Faktor pertama terdiri dari dua level, yaitu (P1): show case temperature 8oC, dan (P2): show case temperature 15oC dan tambah kontrol (P0). Faktor kedua terdiri dari empat level, yaitu (A0): penyimpanan selama 0 jam, (A1): penyimpanan selama 12 jam, (A2): penyimpanan selama 16 jam, (A3): penyimpanan selama 20 jam dan diulang untuk 3 kali ulangan. Kubis bunga sebagai kontrol disimpan pada suhu kamar (28 ± 1 ?). Parameter kualitas yang diamati dalam penelitian ini termasuk penurunan berat badan, tingkat konsumsi O2, warna (warna berbeda), uji organoleptik termasuk umur simpan dan tingkat kerusakan. Hasil penelitian menunjukkan parameter penurunan susut bobot, laju konsumsi O2, warna, umur simpan, tingkat kerusakan pada suhu perlakuan suhu terbaik adalah suhu 8 ? dan waktu penyimpanan 20 jam (P1A3).Kata kunci: kembang kol, waktu penyimpanan, suhu penyimpanan dingin   The purpose of this study was to determine the optimal treatment time and cold storage temperature for the quality of cabbage flowers. This study uses a completely randomized design (CRD) consisting of two factors, the first factor is the temperature used and the second factor is the time during the showcase. The first factor consists of two levels, namely (P1): showcase temperature of 8oC, and (P2): showcase temperature of 15oC and added a control (P0). The second factor consists of four levels, namely (A0): storage for 0 hours, (A1): storage for 12 hours, (A2): storage for 16 hours, (A3): storage for 20 hours and repeated for 3 replications. Flower cabbage as control was stored at room temperature (28 ± 1 ?). The quality parameters observed in this study included weight loss, O2 consumption rate, color (color different), organoleptic tests including shelf life and damage level. The results showed the parameters of weight loss, O2 consumption rate, color, shelf life, damage rate at the best temperature of 8 ? and storage time of 20 hours (P1A3). Keywords: cauliflower, storage time, cold storage temperature


2021 ◽  
Vol 30 ◽  
pp. 100760
Author(s):  
J.G. Hernández-Carrillo ◽  
E. Orta-Zavalza ◽  
S.E. González-Rodríguez ◽  
C. Montoya-Torres ◽  
D.R. Sepúlveda-Ahumada ◽  
...  

2001 ◽  
Vol 64 (10) ◽  
pp. 1584-1591 ◽  
Author(s):  
A. GELMAN ◽  
L. GLATMAN ◽  
V. DRABKIN ◽  
S. HARPAZ

Sensory and microbiological characteristics of pond-raised freshwater silver perch (Bidyanus bidyanus) fish, during cold storage over a period of 25 days were evaluated. Whole fish (averaging 400 g each) were stored in cold storage rooms at either 0 to 2°C, 5°C, or 5°C + potassium sorbate as a preservative. The organoleptic and hypoxanthine test results show that the treatment of potassium sorbate can slow the process of spoilage by about 5 days. Yet, the most important factor affecting the shelf life of these fish is the storage temperature. Keeping the fish at 0 to 2°C can prolong the storage prior to spoilage by 10 days compared with those kept at 5°C. These results obtained through organoleptic tests are corroborated by both the chemical (hypoxanthine and total volatile basic nitrogen) and to some extent by the physical (cosmos) tests. The initial total bacteriological counts were 5 × 102 CFU/cm2 for fish surface and <102 CFU/g for fish flesh, and these counts rose continuously, reaching about 106 CFU/g (0 to 2°C) and 107 CFU/g (5°C) in flesh and 107 to 108 CFU/cm2 on the surface by the end of the storage period. The addition of potassium sorbate led to a smaller increase in bacterial numbers, especially during the first 15 days. Bacterial composition fluctuated during storage. The initial load on the fish surface was predominantly mesophilic and gram positive and consisted mostly (80%) of Micrococci, Bacillus, and Corynebacterium. During the next 10 days, these bacteria were practically replaced by gram-negative flora comprised mostly of Pseudomonas fluorescens that rapidly increased with storage time and accounted for 95% after 15 days.


2019 ◽  
pp. 57-68

“Solo” papaya fruits were harvested in October, 2016 & 2017 seasons from a commercial orchard located in Ismailia Governorate, Egypt. Papaya fruits were harvested at three maturity stages: 25% yellow (stage 1), 50% yellow (stage 2) and 100% yellow (stage 3) and evaluated during storage at ambient temperature (20°C ± 2) for 4 days + at 80- 85% RH or during cold storage at 6°C + 90- 95% RH for 20 days. Papaya fruits softened very rapidly at room temperature after harvest and had 4 days shelf life. However, the fruit can be stored for 20 days at 6°C with little changes in firmness and the fruit apparently progressed in normal ripening upon removal to ambient temperature (20°C) for 3 days. All colour values (a*, L* and C*) were linearly increased during cold storage. Conversely, as a result of colour change from green to orange-red, h° values decreased. Soluble solids content was not affected during ripening at 20°C and remained steady. Fruit harvested at stage 2 and stored at 6°C for 20 days following 3 days at 20°C had superior score for sensorial evaluation.


Sign in / Sign up

Export Citation Format

Share Document