scholarly journals Exploring in vitro gastric digestion of whey protein by time-domain nuclear magnetic resonance and magnetic resonance imaging

2020 ◽  
Vol 99 ◽  
pp. 105348 ◽  
Author(s):  
Ruoxuan Deng ◽  
Anja E.M. Janssen ◽  
Frank J. Vergeldt ◽  
Henk Van As ◽  
Cees de Graaf ◽  
...  
1988 ◽  
Vol 65 (4) ◽  
pp. 1872-1879 ◽  
Author(s):  
R. K. Lambert ◽  
R. J. Pack ◽  
Y. Xia ◽  
C. D. Eccles ◽  
P. T. Callaghan

Images of rabbit tracheal cross sections were obtained at a series of transmural pressures ranging from 22 to -95 cmH2O by use of a nuclear magnetic resonance imaging microscope. The excised, washed tracheas were immersed in a solution of phosphate-buffered saline made up in deuterium oxide (D2O, pH 7.3). The images are maps of proton density in the image slice (2.5 mm thick). All but one series of images showed a collapse process in which the trachealis muscle invaginated asymmetrically, i.e., the muscle appeared to favor one side of the cartilage ring system more than the other. The connecting tissue between the cartilage rings appeared to be more compliant than the rings themselves, thus suggesting that the tracheal lumen became corrugated at negative pressures. In the plane of a cartilage ring, the lumen appeared to remain patent at pressures as low as -95 cmH2O. However, between rings, where the tracheal wall was more compliant, the lumen appeared to be totally occluded at -53 cmH2O. Lumen areas in both the plane of the cartilage rings and in a plane between rings were measured from each series of printed images for six tracheas. These measurements, when normalized, averaged, and plotted against transmural pressure gave asymptotic logarithmic compliances (n1 in the model of Lambert et al., J. Appl. Physiol. 52: 44-56, 1982) of 1.2 +/- 0.4 and 20 +/- 7 for the interring and ring regions, respectively. These values are greater than the critical value of 0.5 (J. Appl. Physiol. 62: 2426-2435, 1987) and are thus consistent with wave speed flow limitation being possible anywhere in the trachea during forced expiration.


Radiology ◽  
1983 ◽  
Vol 148 (3) ◽  
pp. 753-756 ◽  
Author(s):  
K L Moon ◽  
H Hricak ◽  
A R Margulis ◽  
R Bernhoft ◽  
L W Way ◽  
...  

2007 ◽  
Vol 30 (4) ◽  
pp. 41
Author(s):  
A. Dechant

On the morning of October 10, 2003, the residents of New York awoke to find that an entire page of their beloved paper, The Times, had been usurped for the sole purpose of flagrant self-promotion and protestation. On his own behalf, Dr. Raymand Damadian had purchased a one page spread bemoaning his exclusion in the Nobel Prize for Medicine that year which had previously been awarded to Paul Laterbur and Peter Mansfield for their contributions to the development of Magnetic Resonance Imaging (MRI). Over the course of the next few months, the public was to witness a series of such articles proclaiming that a shameful wrong had been committed, and that the truth would eventually prove Dr. Damadian’s accusations. That truth lay in the early theoretical and technical foundations that led to the discovery of MRI. Described just after the Second World War, nuclear magnetic resonance (NMR) was hailed as a breakthrough in physical chemistry for which Felix Bloch and Edward Purcell were awarded the Nobel Prize in Physics in 1952. Two decades later, in 1971, Dr. Damadian discovered that differences between the NMR signals of cancerous and normal tissue might provide a rapid means of cancer detection. However, Laterbur and Mansfield were the first to actually demonstrate images of live tissue using the application of magnetic gradients – the key to modern MRI. Though speculation exists that Dr. Damadian may have been excluded from the prize due to his religious beliefs or political rivalry, only time will reveal the whole truth when the Nobel files are opened 50 years hence. Bradley W. The Nobel Prize: Three Investigators Allowed but Two Were Chosen. Journal of Magnetic Resonance Imaging 2004; 19:520. Laterbur P. Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 1973; 242:190-191. Mansfield P, Grannell P. “NMR diffraction in solids?” Journal of Physics C: Solid State Physics 1973; 63:L433-L426.


Sign in / Sign up

Export Citation Format

Share Document